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The science of thermodynamics is concerned with understanding the properties of inanimate
matter in so far as they are determined by changes in temperature. The Second Law asserts
that in irreversible processes there is a uni-directional increase in thermodynamic entropy,
a measure of the degree of uncertainty in the thermal energy state of a randomly chosen
particle in the aggregate. The science of evolution is concerned with understanding the
properties of populations of living matter in so far as they are regulated by changes in
generation time. Directionality theory, a mathematical model of the evolutionary process,
establishes that in populations subject to bounded growth constraints, there is a uni-direc-
tional increase in evolutionary entropy, a measure of the degree of uncertainty in the age of the
immediate ancestor of a randomly chosen newborn. This article reviews the mathematical
basis of directionality theory and analyses the relation between directionality theory and
statistical thermodynamics. We exploit an analytic relation between temperature, and genera-
tion time, to show that the directionality principle for evolutionary entropy is a non-
equilibrium extension of the principle of a uni-directional increase of thermodynamic entropy.
The analytic relation between these directionality principles is consistent with the hypothesis
of the equivalence of fundamental laws as one moves up the hierarchy, from a molecular
ensemble where the thermodynamic laws apply, to a population of replicating entities (mole-
cules, cells, higher organisms), where evolutionary principles prevail.
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EVOLUTIONARY PROCESSES
Introduction

Evolutionary theory and thermodynamic theory
represent two domains whose mathematical
structures embody a principle describing a
uni-directional increase of an operationally
measurable property. This article will delineate
the relation between these two mathematical
structures and exploit this relation to derive an
analytical correspondence between the thermo-
dynamic laws, which pertain to aggregates of
inanimate matter, and evolutionary principles,
which refer to aggregates of living matter.
*E-mail: ldemetr@oeb.harvard.edu
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Directionality in evolutionary theory is char-
acterized by the observation that species in any
phyletic lineage are in general better adapted
to the local environment than the ones they
replaced. The term adaptedness in this context
refers to the morphological, behavioral, and
physiological attributes of a species that permit
it to compete successfully with other members of
its own species or with individuals of other
species. Darwin (1859) proposed a mechanistic
explanation of adaptation by appealing to the
principle of natural selection. In Darwin's
( 2000 Academic Press
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model, adaptation is the result of a gradual dy-
namic process which arises from the continual
production of new variation, and competition
between the new variants and the incumbent
types for the existing resources. Directionality is
described in terms of an increase in "tness,
a qualitative measure of adaptation, as one popu-
lation replaces another under the selective process.

The concept Darwinian "tness has a range of
speci"c meanings depending on the situation be-
ing examined. It embodies, according to context,
features such as keenness of vision, swiftness of
re#exes, muscular strength. These attributes,
which confer an ability to survive and reproduce,
were supposed to improve over generations
under the force of selection. Fitness in Darwin's
theory is thus a phenomenological concept;
accordingly, its explanatory and predictive power
is purely qualitative.

The issue of "nding an operational measure of
"tness, the "rst step in any quantitative theory of
evolution, has been addressed by several genera-
tions of theoreticians. The current dominant ap-
proach, proposed by Fisher (1930), characterizes
"tness as the number of o!spring that a typical
individual of a given genotype is expected to
bring up to reproductive age. Directionality in
the context of these models is described in terms
of an increase in mean "tness, an assertion about
the relative "tness of individuals in the popula-
tion but of scant relevance to the absolute sur-
vival and reproduction of the population. The
Fisherian models, with their emphasis on the
relative "tness of genotypes, essentially ignored
the impact of ecological factors on evolutionary
change, and furthermore assumed that individual
di!erences in fecundity and mortality due to
di!erences in age, size or any physiological
condition*a feature which is intrinsic to any
genetically homogeneous population*can be
neglected in explaining adaptation.

A new analytical theory of the evolutionary
process, introduced in Demetrius (1974), resolved
the problems generated by the Fisherian model
by considering the variability in demographic
parameters within a population, and the response
of this heterogeneity to ecological conditions,
as the critical factors in explaining adaptive
changes. The analysis appealed to a demographic
model which goes back to Lotka (1939), where
individuals in the population were parameterized
in terms of their age-speci"c fecundity and mor-
tality. The question addressed in the analysis
was: What function of this set of fecundity and
mortality components best characterizes Dar-
winian "tness, the ability of a population to sur-
vive and persist under given environmental
conditions?

By exploiting studies in the ergodic theory of
dynamical systems, I showed that Darwinian "t-
ness is completely described by evolutionary en-
tropy, a demographic variable which measures
the heterogeneity in the age of reproducing indi-
viduals in the population. Entropy is a function
of the age-speci"c fecundity and mortality, and is
given by H"SI /¹I , where

SI "!+
j

pJ
j
log pJ

j
, ¹I "+

j

jpJ
j
. (1)

Here pJ
j

represents the probability that the
immediate ancestor of a randomly chosen new-
born belongs to age-class j. The parameter SI ,
which we will also call evolutionary entropy (the
distinction between SI and H will be evident from
the context) is a dimensionless quantity: it de-
scribes the uncertainty in the age of the immedi-
ate ancestor of a randomly chosen newborn. The
quantity¹I is called the generation time. It repres-
ents the mean age of mothers at the birth of their
o!spring. Evolutionary entropy, as described by
H, thus has the dimension of inverse time.

The work developed in Demetrius (1992) for
constant environmental models, and in Arnold
et al. (1994), Demetrius & Gundlach (1999) for
random environment models, called Directional-
ity theory, derived for di!erent ecological condi-
tions a set of theorems describing changes in H,
and invoked these theorems to infer equivalent
changes in SI , as the population evolves from
one equilibrium state to the next. In this model,
two modes of population growth as a response
to ecological constraints were distinguished
(i) bounded growth, characterized by the condi-
tion of stationary size or #uctuations around
a stationary size, a situation which typically oc-
curs when resources are limited; (ii) unbounded
growth, described by extended episodes of ex-
ponential growth, a condition which typically
results when resources are abundant. Directional
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changes in SI in response to di!erent ecological
forces can be delineated as follows.

E(1) A uni-directional increase in SI : bounded
population growth.

E(2) A uni-directional decrease in SI : unbounded
population growth, large population size.

E(3) Random, non-directional change in SI : un-
bounded population growth, small population size.

Now a population which is exponentially
increasing throughout a long period of its evo-
lutionary history will ultimately cause an exhaus-
tion of available resources. Accordingly, the
condition of unbounded growth cannot persist
over extended periods of evolutionary time, and
hence a state of bounded growth will characterize
the typical demographic condition. Directional-
ity theory thus predicts that, generically, evolu-
tion will be described by a uni-directional
increase in entropy.

Evolutionary entropy, as de"ned by eqn (1) is
a statistical property which describes the varia-
bility in the ages of reproducing individuals in
a population. The age of an organism is corre-
lated with its metabolic energy, hence, entropy
can also be described as the heterogeneity in the
metabolic energy state of reproducing individuals
in the population. Evolutionary entropy also ad-
mits a macroscopic representation (Demetrius,
1997, 1999). Up to additive constants, the micro-
scopically de"ned evolutionary entropy SI can be
expressed as the product of the metabolic rate
of the organism, QI , and the generation time ¹I .
Accordingly, under constraints of stationary
growth, the in"nitesimal change in entropy dSI is
given by the relation

dSI "¹I dQI . (2)

There exist allometric relations between body
size,=, a morphometric variable, and the para-
meters metabolic rate and generation time. We
have (see Peters, 1983; Calder, 1984), QI &=3@4;
¹I "=1@4. These relations imply that QI ¹I "a=,
a condition which entails that evolutionary en-
tropy SI is isometric to body size, SI "a=.
This isometry between entropy and body size
can be exploited to predict the following corres-
pondence between trends in body size and the
ecological constraints the population experiences
during its evolutionary history.

E(1)* A uni-directional increase in body size:
bounded population growth.

E(2)* A uni-directional decrease in body size:
unbounded population growth, large population
size.

E(3)* Random, non-directional change in body
size: unbounded population growth, small popu-
lation size.

As we observed, the condition of unbounded
growth over extended periods is atypical, hence,
directionality theory predicts that generically,
evolution will be described by a uni-directional
increase in body size.

THERMODYNAMIC PROCESSES

In thermodynamic theory, directionality de-
rives from the empirical observation that heat
#ows from high to low temperatures. Clausius
(1870) proposed a mathematical representation
of this principle by showing that the constraints
on the direction of heat #ow imply the existence
of a function S

C
, called thermodynamic entropy,

whose in"nitesimal change is given by

dS
C
"dQ/¹, (3)

where Q denotes the quantity of heat, and ¹

the absolute temperature. Clausius invoked this
quantity to establish an analytic description of
the Second Law. In this description, two types of
processes were recognized: (i) an irreversible pro-
cess, characterized by the condition where some
of the energy introduced to drive the system is
lost to friction and turbulence, and (ii) a reversible
process, an idealized situation described by the
absence of friction or turbulence due to the rela-
tively slow progression of the interactions that
de"ne the system. Clausius formalized changes in
S
C
, as the system moves from one equilibrium state

to the next, according to the following relations:

T(1) A uni-directional increase in S
C
: irrevers-

ible processes.
T(2) A constant value for S

C
: reversible pro-

cesses.
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The intuitive meaning of reversibility is that
the interactions are proceeding very slowly rela-
tive to the time it takes the system to reach its
equilibrium state. Thus, in reversible processes,
the states of the system are approximately equi-
librium states for all time*an atypical situation.
Hence, generically, thermodynamic processes are
characterized by a unidirectional increase in ther-
modynamic entropy.

Clausius' entropy is a macroscopically de"ned
property: it makes no reference to the state of the
individual particles that de"ne the system and
thus provides no mechanistic explanation of the
Second Law. The model that established the link
between atomic theory and directional trends in
heat #ow was proposed by Boltzmann (1896) and
is based on a statistically de"ned quantity. This
new parameter associates to each equilibrium
macrostate M of the system, and thus to each
microstate X which gives rise to M, a Boltzmann
entropy, which we denote by S

B
(X ), given (up to

multiplicative constants) by

S
B
(X)"log P

M(X)
, (4)

where P
M(X)

is the phase-space volume associated
with the macrostate M.

Boltzmann considered the change in entropy
as a system evolves to a "nal equilibrium state
when a macroscopic constraint is lifted in the
system initially at equilibrium, and showed that
S
B
(X

2
)*S

B
(X

1
) where X

1
and X

2
denote the

initial and "nal states, respectively. A crucial ob-
servation made by Boltzmann was that when
X corresponds to an equilibrium state, then
S
B
(X) agrees (up to terms negligible in the size

of the system) with the thermodynamic entropy
of Clausius, consequently the directional change
in S

B
(X ) provided a mechanistic explanation of

the Second Law.
It was further observed that at equilibrium the

Boltzmann entropy S
B
(X) coincides (up to multi-

plicative constants) with the Gibbs entropy
S
G
(o ),

S
G
(o)"!P o (x) log o(x) dx, (5)

which is de"ned not for individual microstates
but for statistical ensembles o. Hence, directional
changes can also be parameterized in terms of the
statistical quantity S
G
(o). We write

T(1)* A uni-directional increase in S
G
: irrevers-

ible process.
T(2)* A constant value for S

G
: reversible process.

EVOLUTIONARY AND THERMODYNAMIC

PROCESSES: A RAPPROCHEMENT

The circle of directionality theorems for evolu-
tionary entropy E(1)}E(3); E(1)*}E(3)* and
thermodynamic entropy T(1), T(2); T(1)*, T(2)*
indicate a formal correspondence between the
thermodynamic and evolutionary models which
we now delineate.

The science of evolution in its widest sense is
concerned with understanding the properties of
populations of replicating organisms in so far
as they are determined by generation time. The
evolutionary properties of organisms, are deter-
mined by their capacity to transform resources
from the environment into maintenance and re-
productive activity*a condition which depends
on the metabolic energy of the organism. Direc-
tionality theory, a mathematical model of the
evolutionary process, is thus concerned with the
rules determining the transformation of meta-
bolic energy between populations of replicating
entities competing for the same resources. The
central parameters in this theory are the genera-
tion time, and evolutionary entropy. The latter
concept has both a statistical representation, as
given by eqn (1), and a macroscopic description
as expressed by eqn (2).

The science of thermodynamics in its widest
sense is concerned with understanding the prop-
erties of aggregates of matter in so far as they are
determined by changes in temperature. The capa-
city of a material aggregate to perform work is
determined by the quantity of heat energy it
contains. Thermodynamic theory is thus con-
cerned with the rules governing the transfer of
heat energy between aggregates of matter subject
to various kinds of external constraints. The
main parameters of the theory are temperature,
and thermodynamic entropy. The latter concept
also has both a statistical description, as given by
eqns (4) and (5), and a macroscopic representa-
tion, as given by eqn (3). The family of parameters
that de"ne the two theories were shown (see



TABLE 1
Relation between thermodynamic and evolutionary

properties

Properties Thermodynamic
theory

Directionality
theory

Manifestation
of energy

Heat Metabolic

Intensity factor Temperature, ¹ Reciprocal
generation time, ¹I

Entropy
Statistical Uncertainty in the

thermal energy state
of a randomly
chosen particle

Uncertainty in
the age of the
mother of a
randomly chosen
newborn

Macroscopic dS"(1/¹ ) dQ,
where Q is the
heat energy

dSI "¹I dQI ,
where QI is the
metabolic energy
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Table 1), to be formally related (Demetrius, 1983;
Arnold et al., 1994).

This article reviews the mathematical basis for
the formal correspondence given in Table 1, and
analyses the relationship between directionality
theory and thermodynamic theory. In elucidating
this connection we will appeal to an analytic
relation between generation time ¹I , and temper-
ature ¹, which is valid for populations of rep-
licating organisms whose birth and death rates
are determined by the temperature of the external
environment. We have (Demetrius, 1997)

¹I "A
ch
okB

1
¹

. (6)

Here h denotes Planck's constant, and k,
the Boltzmann constant. The parameter o"
exp(!DFt/R¹) where DFt is an e!ective activa-
tion energy, and R the gas constant. The para-
meter c is a function of the concentration of
enzymes and substrates in the di!erent cells in the
population.

We will exploit eqn (6) to show that the prin-
ciple of evolutionary entropy increases as the
system evolves from one stationary state to the
next under bounded growth constraints, is a non-
equilibrium extension of the principle of thermo-
dynamic entropy increase for irreversible
processes. This proposition is consistent with
the general tenet regarding the equivalence of
fundamental laws as one moves up the hierarchy,
from an aggregate of inanimate matter whose
organization is determined by temperature, to an
ensemble of replicating entities whose organiza-
tion is generated by cycle time.

RELATED STUDIES

The problem of parameterizing the state of
evolutionary processes (at the level of molecules,
cells, higher organisms), so that its change as-
cribes a temporal direction analogous to the
increase in thermodynamic entropy has occupied
the attention of several generations of scientists.
Fisher (1930) addressed the problem at the
organismic level and proposed the concept
mean "tness as the evolutionary analog of the
Gibbs}Boltzman entropy. Fisher indeed claimed
that his theorem, which asserts an increase in
the mean "tness under natural selection, is an
evolutionary analog of the Second Law. This
observation has stimulated several e!orts to
exploit Fisher's theorem to analytically relate
population variables with thermodynamic con-
cepts such as energy and entropy (cf. Weber et al.,
1988). It is now generally conceded, however,
that Fisher's theorem pertains uniquely to
local changes in population properties (see
Karlin, 1992; Levins & Lewontin, 1985; Maynard
Smith, 1988) and is thus conceptually distinct
from the Second Law which refers to global
changes in thermodynamic variables. More
recent e!orts to provide a parameterization of
the evolutionary process at the organismic level
are described in Brooks & Wiley (1986) and
Wicken (1987). (See also the articles in Weber
et al., 1988.) These studies are based on the
formalism of phenomenological thermodyna-
mics. Analyses at the molecular level, in terms of
Eigen's quasi-species model, see Eigen et al.
(1988), are developed within the formalism of
statistical, mechanical and dynamical systems
theory. Studies of the quasi-species model exploit
the Ising spin system to delineate certain corre-
spondences between concepts in molecular
evolution and thermodynamic variables. The de-
velopment reviewed in this article (see Demetrius,
1997) is based on some recent developments in
the ergodic theory of dynamical systems (Sinai,
1972; Bowen, 1975; Bowen & Ruelle, 1975). This
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body of work provides the basis for relating
evolutionary entropy, which is the entropy of
a dynamical system associated with the evolu-
tionary process, with the Gibbs}Boltzmann
entropy of thermodynamic theory.

Evolutionary Dynamics

The Darwinian theory of evolution by natural
selection was intended to provide a mechanistic
model, based on interactions at the individual
level, of the adaptation of populations of organ-
isms to their environment. In modern language,
Darwin's model postulates that the dynamical
system which describes the replacement of one
population by another within a lineage is the
outcome of the combined action of two processes
which operate on two distinct time-scales. The
"rst process, the mutation event, acts on a short
time-scale, and is the mechanism whereby new
types are introduced in the population. This pro-
cess is random in the sense that it is not caused
by, and is unrelated to, the current needs of the
organism or the nature of the environment. The
second process, the selection event, acts on a
much longer time-scale: it is the mechanism that
screens the new types according to their capacity
to survive and reproduce in competition with
ancestral types. This process is deterministic, in
the sense that its outcome, the invasion or extinc-
tion of the new type is modulated by the response
of the organism to the environmental factors.
During the unfolding of this process, the "tness of
the population, the term Darwin invoked to de-
scribe the capacity of individual organisms to
survive and reproduce, will undergo change: the
less "t, that is, the less well adapted to the envi-
ronmental condition, ultimately being replaced
by the more "t. The unfolding of this process
eventually drives the population to a state where
the "tness is optimal and the population is
in a state of adaptation to the environmental
conditions.

Darwin's theory was developed within the
empirical tradition of 19th century biology, a
milieu which apart from the statistical work of
Mendel (which was not appreciated in its time)
was devoid of any mathematical constructs. The
issue of providing a mathematical representation
of the theory gradually achieved prominence
with the rediscovery of Mendel's laws which
embodied a set of quantitative rules for the trans-
mission of inheritance. One of the most sustained
e!orts to translate the Darwinian program into
an analytic framework was made by Fisher
(1930), who immediately recognized certain for-
mal analogies between the mechanistic models
introduced by Boltzmann (1896) to analyse phys-
ical systems, and the selection models proposed
by Darwin (1859) to explain adaptation in biolo-
gical systems. By considering the dynamical
system which describes the changes in gene
frequency of the population which occurs under
natural selection, Fisher proved a directionality
theorem, which he called the fundamental the-
orem of natural selection, and which states:
the rate of increase in the mean "tness at any
time is equal to the genetic variance in "tness.
Analytically, the theorem is often written in the
form

dmN
dt

"<g(mN ), (7)

where mN describes the average Malthusian para-
meter of the genotype, and <g (m) refers to the
additive genetic variance.

Fisher claimed that the theorem was an
analog of Boltzmann's principle of entropy in-
crease, and thus considered eqn (7) to be an
analog of the Second Law. These claims have
now been re-evaluated. It is now generally admit-
ted that the directional change in mean "tness is
only a statement about the relative viability of
individuals within the population and makes no
prediction about the absolute survival and repro-
duction of populations. Fisher's theorem thus has
little relevance in understanding macroevolution-
ary changes in adaptation.

The issue of developing a quantitative theory
which would explain the adaptation of popula-
tions in terms of a mechanistic model based on
interaction at the level of the organism, was
addressed by Demetrius (1974, 1977), in a new
perspective which drew extensively from develop-
ments in the ergodic theory of dynamical sys-
tems. These new population models, in sharp
contrast to the development proposed by Fisher
(1930), considered the evolutionary process as
a two-stage event, involving mutation and



THERMODYNAMICS AND EVOLUTION 7
selection, and analysed changes in population
composition as the process evolved from one
state to the next. According to the Darwinian
model, mutation provides a continuous source of
variation, whereas selection, which monitors this
variation, will result in the less "t, that is, the less
well adapted to the environmental condition, be-
ing replaced by the more "t or the better adapted.
Consequently, Darwinian "tness, a concept
whose analytical representation is critical for any
quantitative theory of evolution, should be char-
acterized by properties which re#ect features of
adaptation, namely: (i) stability*the persistence
of population numbers to small perturbations in
the individual fecundity and mortality variables;
(ii) competitive ability*the invulnerability of
a genotype to invasion by rare mutants, and
(iii) directionality*the temporal asymmetry of
the evolutionary process as one population re-
places another under the combined e!ects of
mutation and selection.

The work developed in Demetrius (1974)
considered a model of a population of individuals
structured in terms of the ages at which they
reproduce and die. The microscopic variables in
this model are the age-speci"c fecundity and
mortality of the individuals.

In this model, the transition between the di!er-
ent age-classes according to the birth and death
process, can be represented by the life cycle graph
as in Fig. 1.

In this "gure, n denotes the number of age-
classes: b

i
, the proportion of individuals surviving

from age-class (i) to age-class (i#1); and m
i
, the

mean number of o!spring produced by indi-
viduals in the i-th age-class.

The quantity l
j
"b

1
b
2
2b

j~1
represents the

probability that an individual born in age-class
FIG. 1. Life cycle graph of a population.
(1) survives to the j-th age-class, and w
j
"l

j
m

j
denote the net-o!spring production of indi-
viduals in age-class ( j). The probability pJ

j
that

the immediate ancestor of a randomly chosen
newborn belongs to age-class ( j) can be expressed
in terms of the net-o!spring production w

j
and

the population growth rate r. We have

pJ
j
"w

j
exp(!rj). (8)

We showed that evolutionary entropy, as de-
"ned by the variable H"SI /¹I , where SI "!+ pJ

j
log pJ

j
and ¹I "+ jpJ

j
, characterizes the follow-

ing features which we now annotate qualitatively.

(a) Demographic stability. The concept demo-
graphic stability refers to the invulnerability of
a population to small perturbations in the birth
and death rates: entropy determines the rate of
decay of #uctuations in population numbers due
to small perturbations in the age-speci"c fecund-
ity and mortality. In populations subject to
bounded growth constraints, demographically
stable states are described by the condition of
maximal entropy; in populations with un-
bounded growth, demographically stable states
are described by the condition of minimal en-
tropy (Demetrius, 1977; Demetrius & Gundlach,
1999).

(b) Evolutionary stability. This notion per-
tains to the invulnerability of a genotype to in-
vasion by rare mutants: entropy determines the
conditions for invasion of a mutant allele in
a population. In bounded growth populations,
evolutionarily stable states are described by the
state of maximal entropy; under conditions of
unbounded growth, evolutionarily stable states
are characterized by minimal entropy (Demetrius
& Gundlach, 1999).

(c) Directionality. The changes in entropy
parameterize the genotypic and phenotypic
changes in population composition as one popu-
lation replaces another under mutation and se-
lection. Under bounded growth conditions,
entropy increases; under unbounded growth con-
ditions, large population size, entropy decreases;
under unbounded growth conditions, small
population size, the change in entropy is random
and non-directional (Demetrius, 1992).
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We now give an outline of the mathematical basis
for the above three properties.

DIRECTIONALITY THEORY

The directionality principle for evolutionary
entropy is based on a model which considers
biological evolution as involving two com-
plementary processes: mutation and selection.
A population will under the force of certain eco-
logical constraints attain a state of demographic
equilibrium, characterized by the condition in
which the proportion of individuals in the di!er-
ent age-classes remain constant in time. Random
mutation will perturb this equilibrium state by
introducing new types in the population. Com-
petition between the ancestral and mutant types
will ensue and selection will ultimately drive the
population to a new equilibrium state. The math-
ematical representation of this evolutionary
process was initially developed in terms of con-
tinuous age-structured models (Demetrius, 1992).
In this article, we will adopt, for expository con-
venience, the formulation in discrete time given in
Arnold et al. (1994).

¹he Population Dynamics

The state of the population at time t is given by
the vector uN (t)"[u

1
(t),2, u

n
(t )], where u

i
(t) de-

notes the number of individuals in age-class (i) at
time t. The changes in the age-distribution are
given by

uN (t#1)"A(t )uN (t),

where A (t) is the population matrix with age-
speci"c fecundity rates (m

j
) in the top row, and

age-speci"c survival probabilities (b
j
) along the

sub-diagonal, and zero elsewhere. It is known
that when certain natural conditions on the age-
speci"c fecundity and mortality rates obtain, the
system will converge to the equilibrium state de-
scribed by a stable age-distribution, with a popu-
lation growth rate r"0, when birth and death
rates are density-dependent, and r'0 when
density-independent conditions prevail (Liu &
Cohen, 1987).

The population growth rate is known to satisfy
a variational principle analogous to the principle
of the minimization of free energy in statistical
mechanics. This variational principle is de"ned in
terms of a new con"guration space X, the set of
all paths of the life cycle graph given by Fig. 1.

To characterize the variational principle, we
consider the shift operator q on X ; and we let
M denote the set of all q-invariant probability
measures on X. Also let Hk(q) denote the dynam-
ical entropy (the Kolmogorov}Sinai invariant)
for the shift q with respect to k.

By appealing to the ergodic theory of dynam-
ical systems, we showed that the growth rate
r satis"es the following extremal principle
(Demetrius, 1974):

r"sup
k CHk(q )#P u dkD , (9)

where u :XPR is given by u(x)"log
ax1x0

, with
(a

ij
) the (i, j) entry of the matrix A which describes

the population at demographic equilibrium.
The supremum in (9) is achieved at a unique

k which we denote by kL . The probability measure
kL can be explicitly described in terms of the ele-
ments of the stochastic matrix P"(p

ij
) obtained

by the canonical normalization of the population
matrix A. The terms HkL (q) and : log a

x1x0
dkL can

be explicitly computed. These two terms, denoted
H and U, are given by

H"!

+ pJ
j
log pJ

j
+ jpJ

j

,

SI
¹I

,

U"

+ pJ
j
log w

j
+ jpJ

j

,

EI
¹I

, (10)

where pJ
j
is given in eqn (8).

The quantity SI describes the uncertainty in the
age of the mother of a randomly chosen newborn;
EI represents the net-o!spring production aver-
aged over all age-classes. ¹I denotes the genera-
tion time, the mean age of mothers at the birth of
their o!spring. We have from eqn (10) the identity

r"H#U. (11)

In view of the variational characterization of the
growth rate, it follows that a population at
demographic equilibrium can be represented by
the mathematical object (X, kL , u), where u denote
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the potential on the con"guration space X, de-
"ned by u(x)"log a

x1x0
.

We observe from the preceding identity that
the following implications hold:

U(0 N r(H, U'0 N r'H. (12)

This leads to a natural classi"cation of popula-
tions in terms of their growth rate. The property
U(0 (bounded growth), describes a population
whose growth rate is limited by the entropy. This
circumstance includes populations with constant
size and populations which spend the greater
part of their evolutionary history with size #uctu-
ating around some constant value. The property
U'0 (unbounded growth), de"nes populations
whose growth rate exceeds entropy. This situ-
ation includes populations which spend an ex-
tended part of their evolutionary history in the
exponential growth phase.

¹he Mutation Event

The model postulates that random mutations
occur in a small subset of the ancestral popula-
tion. A mutation in this subset is analytically
represented by a perturbation of u, a situation
which gives rise to a new potential function

u*"u#dt.

The magnitude d of the perturbation is assumed
to be small, and the potential functions u and
t are assumed to satisfy : u dk": t dk.

Let Dr and DH denote changes in the demo-
graphic variables which result from the mutation
event. We have shown that for small absolute
values d, the following relations hold (Demetrius,
1992, Arnold et al., 1994):

Dr"Ud, DH"!p2d,

where U is given as in eqn (10), and p2, the
demographic variance, is given by

p2"
+
j
(=

j
)2pJ

j
¹K

, (13)

where=
j
"!jU#log w

j
.

The above perturbation conditions imply,
since p2'0, the following set of mutation
relations,

U(0 N DrDH'0,

U'0 N DrDH(0. (14)

The perturbation methods also show that the
change Dp2 in the demographic variance is given
by Dp2"cd, where c, called the correlation
index, is given by

c"2p2!
3p2

¹I
+
j

jp
j
=

j
#

1
¹I

+
j

p
j
=3

j
.

We now have the following implications:

c(0 N DHDp2'0,

c'0 N DHDp2(0. (15)

INVASION}EXTINCTION

The invasion}extinction dynamics of the
mutant gene, that is, the condition for its ultimate
establishment in the population, can be analysed
in terms of di!usion processes (cf. Feller, 1951).
The analysis described in Demetrius & Gundlach
(1999) integrated the techniques of di!usion pro-
cesses and the ergodic theory of age-structured
populations to show that the outcome of com-
petition between the incumbent allele and the
mutant type is determined by the parameter s,
where

s"Dr!
1
N

Dp2.

Let P (y) denote the probability that a mutant
with initial frequency y invades the population.
As shown, Demetrius (1997), Demetrius &
Gundlach (1999), the function P(y) can be ex-
pressed explicitly in terms of the parameters s, Dr,
Dp2 and the population size N. Moreover, the
geometry of the function P(y) is determined by
the sign of s. We have:

s'0NP(y) convex; s(0NP(y) concave

The preceding observation can be exploited to
express the conditions for invasion in terms of the
parameters Dr and Dp2. We have:

(i) Dr'0, Dp2(0: invasion occurs almost
surely (a.s.);



TABLE 2
Invasion}extinction dynamics of mutants

Ecological
constraint

Demograhic
state

Selective outcome

I. Bounded growth DH'0 Mutant invades almost surely (a.s)
DH(0 Mutant becomes extinct (a.s)

II. Unbounded growth; DH(0 Mutant invades (a.s)
Unbounded population
size

DH(0 Mutant becomes extinct (a.s)

III. Unbounded growth; DH'0 Mutant invades with a probability which is a decreasing function of size
Bounded population
size

DH(0 Mutant invades with a probability which is an increasing function of size

TABLE 3
Relation between ecological conditions and evolu-

tionary trends in entropy

Ecological constraints Directional trends

Bounded growth Increase in SI
Unbounded growth

(i) Large population size Decrease in SI
(ii) Small population size Random, non-directional

changes in SI
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(ii) Dr(0, Dp2'0: extinction occurs (a.s.);
(iii) Dr(0, Dp2(0:

(a) N'
Dp2
Dr

: extinction occurs (a.s.)
(b) N(

Dp2
Dr

: invasion occurs with a probabil-
ity which increases as the population size
decreases;

(iv) Dr'0, Dp2'0:
(a) N'

Dp2
Dr

: invasion occurs (a.s.)
(b) N(

Dp2
Dr

: extinction occurs with a prob-
ability which increases as the population
size decreases.

Now, the parameters Dr and Dp2, as (14) and
(15) indicate, are correlated with DH. Accord-
ingly, the conditions for invasion can be ex-
pressed uniquely in terms of DH, together with
the parameters U and c which de"ne ecological
constraints. These constraints de"ne (a) limits on
the population growth rate, which we describe as
bounded, when U(0, and unbounded, when
U'0; (b) limits on the population size, which we
describe as bounded when N(c/U, and un-
bounded when N'c/U.

Table 2 describes the selective outcome of com-
petition between mutant allele and incumbent
type, in terms of the entropy, and the constraints
on population growth rate and population size.

THE DYNAMICS OF SELECTION

The mutation event introduces new genotypes
in the population. These new types will mate with
the ancestral types according to the Mendelian
laws to generate new types. During the selection
process which proceeds on a time-scale that is
much longer than the invasion process, ecological
factors will regulate the population dynamics and
the number of these genotypes will vary in re-
sponse to the ecological e!ects. This process can
be described in terms of the interaction between
the three dynamical systems induced by the geno-
type. As shown in Demetrius (1992), this coupled
dynamical system will converge to a new steady
state described by a new entropy.

The expression DI H, which denotes the change
in entropy as the population evolves from one
demographic equilibrium state to the next, and
DH, which denotes the change in entropy which
characterizes the invading mutant, can be shown
to satisfy (Demetrius, 1992),

DHDI H'0. (16)

This relation asserts that the global directional
change in entropy as one population replaces
another under the action of mutation and
selection is positively correlated with the local
directional changes in entropy induced by the
invading mutant itself.

The integration of the mutation relations as
described by eqn (14), the invasion}extinction
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criteria, as described in Table 2, and the selection
event, as represented by eqn (16) provide a means
of relating demographic and ecological condi-
tions with global directional trends in entropy.
The directional trends in SI and the corresponding
ecological constraints are summarized in Table 3.

There exist intrinsic limits to the directional
changes in entropy owing to constraints on the
ability of new mutants to become established in
the population. The degree of genetic polymor-
phism at a given locus can be shown to increase
for the mutation}selection process when ecologi-
cal conditions that generate directional changes
in entropy obtain. However, a limit will ultimate-
ly be attained described by the state where the
genome becomes invulnerable to the invasion of
new alleles. The limiting condition derives from
a result due to Kingman (1980) which asserts that
the expectation o, that a new mutant takes its
place in a new equilibrium population, scales
according to the relation, o&exp(!ak ), where
a is a parameter that depends on the "tness of
the di!erent alleles, and k denotes the number
of alleles at the locus. The expression for o im-
plies that large polymorphisms once established
are highly resistant to invasion by a new mutant;
moreover, this resistance increases exponentially
with the number of alleles. In view of this
property, we can assert, for example, that in
populations evolving under stationary growth
constraints, the entropy SI will increase to some
upper limit which may be inferior to the math-
ematically de"ned maximum condition.

Molecular Models

The results described in the preceding section
pertain to a wide class of models. Directionality
principles for evolutionary entropy have been
shown to hold for dynamical systems described
by products of random matrices, Arnold et al.
(1994). These dynamical systems include the
Leslie matrices, models of cellular populations,
and also discrete analogs of the quasi-species
models developed by Eigen (1971) and Eigen
& Schuster (1979).

The quasi-species model is concerned with the
dynamics of di!erent polynucleotide sequences
that may be mutually interconverted through repli-
cation and mutation. The statistical mechanics
formalism can also be applied to this model. In
the studies by Demetrius (1987), we exploited
a variational principle to derive thermodynamic
analogs of the population parameters in the
quasi-species model. Leuthausser (1987) has also
explored the connection between population
variables and thermodynamic parameters by
characterizing the quasi-species model in terms of
Ising spin lattice systems. These complementary
analyses, reviewed in Eigen et al. (1988), under-
score the signi"cance of statistical mechanics in
the analysis of evolutionary processes at di!erent
levels of biological organization.

Thermodynamics and Evolution:
Formal Relations

Thermodynamic theory in its widest sense is
concerned with explaining and interpreting the
properties of matter insofar as they are deter-
mined by changes of temperature. The three cen-
tral parameters in the theory are the temperature,
¹, thermodynamic entropy S, and energy E, the
mean kinetic and potential energy of the molecu-
les in the aggregate.

The three quantities are known to be related:
the temperature can be described by the amount
of heat that must be added to the system to
increase its entropy by one unit. We write

1
¹

"

DS
DE

.

The above expression can also be written

DE"DS]¹. (17)

Equation (17) expresses the heat energy present
in a substance at a particular temperature ¹ as
the product of two factors. The net transmittable
motion, represented by the temperature ¹, is the
intensity factor because it is independent of the
amount of substance in the system under consid-
eration. The capacity property DS of the heat
energy is an extensive factor since it is propor-
tional to the amount of substance in the system.

Irreversibility in thermodynamic processes is
expressed in terms of the Second Law: a system
subject to adiabatic constraints is characterized
by a uni-directional increase in entropy. This
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principle is illustrated by the following model.
Consider, as our thermodynamic process, a bar
in an adiabatic enclosure. We assume that the bar
is in a non-equilibrium state*in the thermody-
namic sense. This condition entails that one end
of the bar is hotter than the other. The Second Law
asserts that the hot end of the bar will cool and
the cold end will warm so that the initial temper-
ature gradient disappears and a state of uniform
temperature is attained. During this process the
thermodynamic entropy of the bar will increase
until, as the state of thermal equilibrium is attained,
it ceases to increase and reaches its maximum.

Evolutionary theory in its widest sense is
concerned with understanding the properties of
populations of replicating entities in so far as they
are a!ected by changes in the mean cycle time,
that is, the mean age at which replication occurs.
The central parameters in the theory are the
generation time, ¹I , evolutionary entropy SI and
reproductive potential, U.

These three quantities are related. A perturba-
tion analysis of eqn (11) shows that the genera-
tion time ¹I can be described as the amount of
reproductive potential that must be added to the
population to reduce its entropy by one unit. We
write

¹I "
DSI

!DU
.

The above expression can be written in the form

DU"!

1
¹I

DSI . (18)

Now the reproductive process involves the
conversion of energy assimilated by the organism
to the production of new tissues, seed, eggs
and embryos. This process of reproduction
(generation of new gametes), and survivorship
(maintenance and growth of the organism) in-
volves expenditure of metabolic energy. Equation
(18) can be interpreted as expressing the meta-
bolic energy present in a population with a given
cycle time ¹I as a product of two factors. The
quantity 1/¹I is an intensity factor: it is the same
in every part of the population and is not depen-
dent on the structure of a given subset of the
population. The quantity DSI represents the ex-
tensive or capacity factor of the metabolic energy.
Irreversibility in evolutionary processes is
embodied in terms of the directionality principle
for SI : as a population subject to bounded growth
constraints evolves from one demographic equi-
librium state to the next, the entropy SI increases.
This principle can be illustrated by the following
model. Consider a population in an environment
with limited resources so that the population
growth is stationary. We assume that the popula-
tion is in a non-equilibrium state*in the evolu-
tionary sense. This means that the population is
vulnerable to the invasion of new mutants*a
condition which entails that the generation time
of the resident population is greater than the
generation time of mutant populations. The di-
rectionality principle for evolutionary entropy
asserts that new mutants will arise and continue
to invade the population until a state of
evolutionary equilibrium is attained. During the
transition towards evolutionary equilibrium, the
evolutionary entropy will increase until the popu-
lation becomes invulnerable to the invasion by
new mutants and the condition of maximal
entropy is reached.

The observations I have described point to a
formal correspondence between thermodynamic
variables and evolutionary parameters which can
be elucidated as follows. We "rst observe that the
free energy in a thermodynamic system is given
by the relation

F"E!S¹. (19)

whereas the population growth rate in evolution-
ary systems is expressed, using eqn (11), by

r"U#SI /¹I . (20)

The contrast between the pair of expressions
(17), (18) and (19), (20), indicates the existence of
a formal correspondence between the thermo-
dynamic variables and the population parameters,
namely: free energy*growth rate; inverse tem-
perature*generation time; thermodynamic en-
tropy*evolutionary entropy.

Thermodynamics and Evolution:
Analytic Relations

The arguments we have described indicate a
formal correspondence between the parameters
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that de"ne thermodynamic and evolutionary
processes, and entail a formal analogy between
thermodynamic entropy and evolutionary en-
tropy. The problem we now address is: does this
formal analogy have an analytic basis? We will
show that an analytic relation exists in the case of
populations of cells: organisms whose birth and
death rates are determined by the temperature of
the external environment. We will establish for
cellular populations that, as the absolute temper-
ature tends to zero, thermodynamic entropy and
evolutionary entropy coincide. This limiting con-
dition is based on analytic relations between two
pairs of variables: (a) thermodynamic entropy
and temperature, intrinsic properties of aggreg-
ates of inanimate matter, (b) evolutionary en-
tropy and generation time, intrinsic properties of
replicating organisms.

THERMODYNAMIC ENTROPY

AND TEMPERATURE

Expression (3) indicates that thermodynamic
entropy is a function of temperature. The relation
between changes in entropy S as the absolute
temperature ¹ tends to zero is expressed in terms
of the principle

SP 0 as ¹P0. (21)

This tenet, known as the third law of thermo-
dynamics was postulated by Nernst based on
the observation that in chemical reactions, the
change DS in entropy vanishes as the absolute
temperature tends to zero. The principle can
be derived from considerations of statistical
mechanics. The essential features of the model
are: (i) the energy levels of the system are quan-
tized; and (ii) the ground state is non-degenerate.
Given these premises it follows that at a su$-
ciently low temperature all the particles will be
forced down into the lowest possible levels and
the entropy will be zero.

EVOLUTIONARY ENTROPY AND

GENERATION TIME

Expression (2) shows that evolutionary en-
tropy is a function of the generation time. The
relation between changes in entropy SI as
the generation time increases to in"nity can be
derived from statistical mechanics consider-
ations (Demetrius, 1983). In the case of stationary
populations, we have

SI P 0 as ¹I PR. (22)

The derivation of eqn (22) rests on a discretiz-
ation of the population into an in"nite number of
age-classes. The changes in the age-distribution
can be represented, without loss of generality, by
the in"nite Leslie matrix

0 b
0

b
0

2 2

b
1

0 0 2 2

0 b
2

0 2 2

0 0 b
3

2 2

2 2 2 2 2

2 2 2 2 2

.

The population growth rate r satis"es an ex-
tremal principle of the form (9) where the poten-
tial u is now a many-body potential (see
Demetrius, 1983). The net-reproductive function
at age k is given by <

k
"b

0
l
k
, where l

k
"

b
1
2b

k~1
. We assume that +

k
<
k
"1, that is, the

population has stationary size. Demographic
equilibrium states of the population are de-
scribed by probability measures, de"ned on the
space of genealogies, which maximize the sum of
the entropy and the reproductive potential, see
eqn (7). It was shown (Demetrius, 1983) that if
+ (k#1)<

k
"R, then the population has

a unique equilibrium state. This state is ergodic
and is the Dirac measure, which implies that the
entropy SI "0. Now the generation time ¹I "
+
k
k<

k
. We conclude that when stationary growth

constraints obtain, ¹I PR implies that SI P 0.

THERMODYNAMIC ENTROPY AND

EVOLUTIONARY ENTROPY

We can exploit eqns (21) and (22) to derive an
analytic relation, under certain limiting condi-
tions, between S and SI . We showed, Demetrius
(1997), that in the case of populations of rep-
licating cells, an analytic relation between
temperature and generation time exists, as given
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by eqn (6). We conclude from eqn (6), (21) and (22)
that in the limiting case ¹"0, the entropies S and
SI coincide, and assume the limiting value zero.

A population of cells can be considered both as
a thermodynamic system, de"ned by a temper-
ature ¹ and an entropy S; and as an evolutionary
system, described by a generation time ¹I and
an entropy SI . The analytic relations between:
(a) generation time and temperature, as given by
eqn (6), and (b) thermodynamic entropy and
evolutionary entropy in the limit ¹"0, indicate
that the correspondence between the directional-
ity principles for thermodynamic and evolution-
ary processes is more than a formal analogy. At
a certain level of abstraction, both principles de-
scribe the existence of equivalent constraints on
the #ow of energy. The increase in thermody-
namic entropy is a consequence of the fact that
heat energy always #ows spontaneously from sys-
tems at high to systems at low temperatures; where-
as, the increase in evolutionary entropy derives
from the fact that, in populations competing for
limited resources, the conversion of resource energy
into metabolic energy is achieved more e$ciently
by populations with shorter generation times.

Now thermodynamic entropy is a measure
of the uncertainty in the thermal energy state of
a randomly chosen particle in an aggregate
of inanimate matter. In view of the correlation
between an organism's age and its metabolic
energy, evolutionary entropy can be considered
to be a measure of the uncertainty in the meta-
bolic energy state of the mother of a randomly
chosen newborn in a population of replicating
organisms. When ¹"0, these two measures of
uncertainty coincide. When ¹'0, we can appeal
to equations (2), (3) and the analytical relation
between generation time ¹K and temperature
¹ given by (6), to infer the following condition:
the principle that asserts a uni-directional in-
crease in evolutionary entropy for systems sub-
ject to bounded growth constraints constitutes
a non-equilibrium extension of the principle that
posits a unidirectional increase in thermo-
dynamic entropy for irreversible processes.

Conclusion

Directionality in aggregates of inanimate
matter can be described in terms of the Second
Law of Thermodynamics: the increase in thermo-
dynamic entropy for irreversible processes. The
signi"cance of the Second law derives from
the fact that it embodies a universal property of
physical systems*and thus constitutes a law of
Nature. The theory proposed by Boltzmann owes
its importance to the fact that it provides a stat-
istical interpretation of the Clausius' entropy,
thus giving an explanation of the Second Law in
terms of the laws of Newtonian mechanics.

Directionality in populations of replicating
organisms can be described in terms of an in-
crease in evolutionary entropy in populations
with bounded growth. Evolutionary entropy is a
statistical quantity: it is a measure of the uncer-
tainty in the age of the mother of a randomly
chosen newborn in a population of replicating
organisms. The directionality principle for evolu-
tionary entropy is derived from a mathematical
model of mutation and selection in a population
process, hence, the status of this principle as
a universal law will depend on its empirical valid-
ity. The empirical signi"cance of the principle is
currently being addressed, and preliminary in-
vestigations, both at the level of cells and higher
organisms, provide support. We now comment
brie#y on these studies.

Changes in the composition of populations of
cells can be parameterized in terms of the hetero-
geneity in cycle time, a variable which is corre-
lated with evolutionary entropy. The changes in
this measure of heterogeneity using diploid hu-
man cells evolving under quasi-stationary condi-
tions (Macieira-Coelho et al., 1996), indicate a
uni-directional increase, which concords with our
predictions. Changes in the composition of hu-
man populations can be parameterized in terms
of the heterogeneity in the age of reproducing
individuals in the population, a property mea-
sured by evolutionary entropy. Over relatively
short periods of time, say 200 years, these
changes in entropy will be due mainly to cultural
rather than genetic factors. However, the theory,
as observed in Demetrius & Ziehe (1984) is also
applicable to changes induced primarily by cul-
tural mechanisms. The analysis in Demetrius
& Ziehe (1984), and Demongeot & Demetrius
(1989) based on Swedish and French demo-
graphic data during the last two centuries, indi-
cates an increase in entropy, except in France
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during the war years, when exogenous forces
prevail. These increases are also consistent with
the predictions of directionality theory.

Indirect evaluation of the theory can be made
by studying trends in the morphometric variable
body size, a parameter which we have shown is
allometrically related to entropy. The theory pre-
dicts: (a) a uni-directional increase in body size,
under slow or stationary growth constraints;
(b) a uni-directional decrease in body size,
in exponentially increasing populations with
large population size; and (c) random non-direc-
tional changes in body size, in rapidly increasing
populations with small population size. There
exists an extensive literature regarding trends in
body size within phyletic lineages (Bonner, 1965;
Newell, 1949; Stanley, 1973). These empirical
studies point to a uni-directional increase as the
typical condition for mammalian lineages*a
property known as Cope's rule. Most mammals
can be considered as evolving under ecological
conditions which induce slow or stationary
population growth; hence, this pattern of entropy
increase accords with our predictions. These ob-
servations indicate that the increase in evolution-
ary entropy under bounded growth constraints
have both strong explanatory and predictive
properties and constitute a unifying principle for
understanding the patterns generated by muta-
tion and natural selection over evolutionary time.

I would like to thank Richard Lewontin, David
Thaler and Irwin Oppenheim for valuable help and
advice.
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