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Abstract Markov models of evolution describe changes in the probability distri-

bution of the trait values a population might exhibit. In consequence, they also

describe how entropy and conditional entropy values evolve, and how the mutual

information that characterizes the relation between an earlier and a later moment in

a lineage’s history depends on how much time separates them. These models

therefore provide an interesting perspective on questions that usually are considered

in the foundations of physics—when and why does entropy increase and at what

rates do changes in entropy take place? They also throw light on an important

epistemological question: are there limits on what your observations of the present

can tell you about the evolutionary past?
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Introduction

Entropy increase is almost always treated as a topic in the foundations of physics,

but there are reasons to think that this is a mistake. The entropy of a system at a time

is well-defined whenever there is a probability distribution for the system’s possible

states at that time, and probability distributions are described in many sciences, not

just in physics. In addition, an entropy increase for states P1, P2,…,Pn does not

entail an entropy increase for states Q1, Q2,…,Qm, where the Q-properties supervene

on the P-properties (Barrett and Sober 1994, 1995). Given this, the general question

of when and why entropy increases must be gently removed from the exclusive grip
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of physicists and examined in connection with processes described in other sciences.

This is a point with which physicalists should agree.

The processes considered in this paper are described in so-called Markov models

of evolution. These models are widely used throughout several areas of evolutionary

biology, including phylogenetics (see, for example, Semple and Steel 2003;

Felsenstein 2004), DNA sequence evolution (Durrett 2002), population genetics

(Crow and Kimura 1970), and modeling of speciation and extinction (Pinelis 2003).

However, in these applications the topic of entropy change has rarely been explicitly

considered. The abstractness of some of these models means that they can apply to

many systems that change through time, not just to lineages undergoing biological

evolution. Moreover, some of these models apply to systems that are not at

equilibrium as well as to ones that are.

Since probability has both objective and subjective interpretations, entropy has

the same dual nature. In what follows, we will investigate both. Markov models of

evolution describe how trait frequencies change value in a population. Since trait

frequencies are objective quantities, the probabilities that describe these quantities

are objective as well, and so are the entropies. But these models also tell you how

observations of the present state of a population should affect your uncertainty about

the past or future state of that population. Here entropy describes something

subjective.

Although ‘‘entropy’’ may sound like a concept from physics, it is definitionally

related to another concept, that of mutual information, and this concept not only

sounds like it has a wider scope of application; it does. The relationship of entropy

to mutual information entails that tracing the changes in entropy that a lineage

experiences has epistemological significance; it allows you to estimate how much

information the present state of the lineage provides about the lineage’s past. Do

present-day traces unambiguously and definitively reveal what the past was like, or

is the past forever lost to us, with no petite Madeleine in sight? The truth is to be

found between these two extremes. Information often decays, but the rate at which it

decays depends heavily on the specifics of the processes involved. This may seem to

give rise to a paradox: to judge how much information the present provides about

the past, you need information about the processes linking present to past. But there

is no paradox here. Your genotype provides information about the genotypes of your

parents, but only because the process of genetic inheritance has certain features. The

same is true of evolution, though evolutionary descendants and ancestors are

separated by far greater reaches of time.

We begin with the simplest Markov model, in which a lineage at a point in time

has just two states (coded as 0 and 1), but most of our discussion extends seamlessly

to general finite-state Markov processes.1 When a probability distribution attaches

to the states that the lineage might occupy at a given time, we can compute the

lineage’s entropy via the formula2 -
P

pi(log pi). The entropy is maximal when the

1 In this paper ‘Markov process’ will refer to either a discrete Markov process (a Markov chain) or a

continuous-time Markov process, on a finite state space.
2 Throughout this paper, log is with base e, rather than 2; the conclusions remain the same regardless of

the base of the log, though some formulae change slightly.
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two states are equiprobable and minimal when they have probabilities of 1 and 0.

An evolutionary process may lead to a change in the frequency of the two states, and

so the entropy may change.

Markov modeling of the evolution of a binary character in a lineage starts with

the idea of ‘‘instantaneous’’ probabilities of change. Let u be the probability that a

lineage in state 0 changes to state 1 in a brief period of time; let v be the possibly

different probability that a lineage in state 1 changes to state 0 in that brief moment.

By allowing the ‘brief’ period of time to be sufficiently short, we may assume that u
and v are both less than 0.5. The next step is to use these instantaneous transition

probabilities to model what happens in a lineage that has some number of these

small instants of time as its duration. If Xt denotes the state of the system at time t,
a Markov model describes the values of the conditional probabilities PrðXt ¼ jj
X0 ¼ iÞ; this is the probability that a lineage will end in state j, given that it begins in

state i and has a duration of t units of time. For convenience, we will describe a

discrete time rather than a continuous time model.3 There are four lineage transition

probabilities to consider:

PrðXt ¼ 1jX0 ¼ 0Þ ¼ u

uþ v
� u

uþ v
ð1� u� vÞt

PrðXt ¼ 0jX0 ¼ 0Þ ¼ v

uþ v
þ u

uþ v
ð1� u� vÞt

PrðXt ¼ 0jX0 ¼ 1Þ ¼ v

uþ v
� v

uþ v
ð1� u� vÞt

PrðXt ¼ 1jX0 ¼ 1Þ ¼ u

uþ v
þ v

uþ v
ð1� u� vÞt

In each equation, the first addend fails to mention the amount of time t between the

lineage’s start and finish; the second addend does, and it quickly shrinks towards

zero as t increases. This means that the first addend (namely u/(u ? v) and v/

(u ? v)) describes the probability that obtains in the limit as the time in the lineage

tends towards infinity. These are the so-called equilibrium probabilities. When we

consider a short period of time, the values of these transition probabilities are

mainly determined by the lineage’s initial state; if the lineage begins in a given

state, it will almost certainly end in that same state.4 As the duration of the lineage is

increased, the process plays a progressively l narger role in determining the

probability of the final state and the initial condition of the lineage is steadily

forgotten. For example, if u = v, the first addend in each of these four equations

equals �, to which the second addend adds or subtracts a quantity that shrinks as the

duration of the lineage is increased.

This simple model can be used to describe the difference between selection and

drift. Pure drift is represented by the idea that u = v and selection for character state

1 by the idea that u [ v. These constraints on the instantaneous probabilities of

3 The formulae for a continuous-time model are similar; just replace the term ð1� u� vÞt by e�ðuþvÞt.
4 For example, at t = 0, PrðXt ¼ 1jX0 ¼ 1Þ ¼ PrðXt ¼ 0jX0 ¼ 0Þ ¼ 1, and PrðXt ¼ 1jX0 ¼ 0Þ ¼
PrðXt ¼ 0jX0 ¼ 1Þ ¼ 0.
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change have implications concerning how different lineage transition probabilities

will be related. If the traits are subject just to drift, then PrðXt ¼ 0jX0 ¼ 0Þ ¼
PrðXt ¼ 1jX0 ¼ 1Þ and PrðXt ¼ 1jX0 ¼ 0Þ ¼ PrðXt ¼ 0jX0 ¼ 1Þ; selection for state

1 means that PrðXt ¼ 1jX0 ¼ 0Þ[ PrðXt ¼ 0jX0 ¼ 1Þ and that PrðXt ¼ 1jX0 ¼ 1Þ
[ PrðXt ¼ 0jX0 ¼ 0Þ. The impact of selection and drift on these transition

probabilities is represented in Fig. 1.

To address the question of how entropy changes in this Markov process, we begin

by considering the initial state of the lineage and then trace the lineage forward in

time. This initial state does not need to be the moment at which the lineage comes

into existence; it is simply the time at which the investigator wants to start tracing

the lineage forward. At the start of the process, the two possible states have

probabilities Pr(the lineage starts in state 0) = p0 and Pr(the lineage starts in state

1) = p1. Then the lineage starts evolving. In the limit, as time tends to infinity, the

probabilities of the lineage’s state converge on the equilibrium probabilities p0 = v/

(u ? v) and p1 = u/(u ? v). As the probabilities evolve—from their initial values

to their equilibrium values—there are three different questions that can be asked

about entropy increase:

(1) Definite starting state: If the lineage definitely starts in state 1 (or in state 0),

under what circumstances will entropy increase?

(2) Equilibrium starting state: If the lineage’s starting state is characterized by the

equilibrium probabilities p0 and p1, under what circumstance will entropy

increase?

(3) Probabilistic starting state: If the lineage’s starting state is characterized by

the probabilities p0 and p1, under what circumstance will entropy increase?

It should be clear that (3) is the most general question of the three; (1) and (2) are

special cases. By ‘‘increasing,’’ we mean that the entropy sometimes increases and

never declines; by ‘‘strictly increasing,’’ we mean that the entropy at time t0 is

Fig. 1 The effect of drift and of selection for state 1 on transition probabilities in a continuous-time two-
state model. Time is measured in units of the expected number of substitutions for the process in
equilibrium
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always strictly greater than the entropy at time t whenever t \ t0.5 When entropy

isn’t always increasing, the exceptions of interest are cases in which entropy always

declines, goes up and then down, or never changes.

Conditional entropy versus ordinary entropy

Our main task is to track the behavior of the conditional entropy when t units of

time have elapsed after the lineage’s initial state. We explain this first with reference

to a two-state process, using the usual information-theoretic terminology (Cover and

Thomas 1991). Conditional on the system starting in state 0, the entropy after t units

of time have passed is:

HðXtjX0 ¼ 0Þ ¼ � PrðXt ¼ 0jX0 ¼ 0Þ logðPrðXt ¼ 0jX0 ¼ 0ÞÞ
� PrðXt ¼ 1jX0 ¼ 0Þ logðPrðXt ¼ 1jX0 ¼ 0ÞÞ

ð1Þ

Similarly, conditional on the lineage starting in state 1, the entropy after t units of

time will be:

HðXtjX0 ¼ 1Þ ¼ � PrðXt ¼ 0jX0 ¼ 1Þ logðPrðXt ¼ 0jX0 ¼ 1ÞÞ
� PrðXt ¼ 1jX0 ¼ 1Þ logðPrðXt ¼ 1jX0 ¼ 1ÞÞ

ð2Þ

If p0 is the lineage’s probability of starting in state 0 and p1 is its probability of

starting in state 1, then the lineage’s conditional entropy, denoted by H(Xt|X0), is a

weighted average of the two expressions just described (i.e., p0 times term (1) ? p1

times term (2)). In other words, the conditional entropy is a weighted average of the

values H(Xt|X0 = 0) and H(Xt|X0 = 1) according to the prior probabilities pi. Note

that the pi values are constants whereas the PrðXt ¼ jjX0 ¼ iÞ terms change value

with time. The conditional entropy should be contrasted with ordinary (i.e.
unconditional) entropy, H(Xt), which is:

HðXtÞ ¼ � PrðXt ¼ 0Þ logðPrðXt ¼ 0ÞÞ � PrðXt ¼ 1Þ logðPrðXt ¼ 1ÞÞ:

Conditional entropy also should not be confused with the quantities H(Xt|X0 = 0)

and H(Xt|X0 = 1), even though these expressions involve conditional probability

distributions.

Markov models of evolution apply to lineages evolving through time. The

probabilities deployed in these models pertain to population properties—for

example, to the frequencies of traits in a population. Entropy in these models is

therefore a property of the probability distribution of a population’s possible states;

it is not a property of the organisms in those populations. If we consider the various

possible trait values that the organisms in a population might have for some trait, a

monomorphic population will have a lower entropy than one that is highly

polymorphic. The entropy of the population says nothing about the complexity of its

5 A sufficient condition for a function to be strictly increasing is that it has a strictly positive slope

everywhere, though this condition is not necessary. This can be seen by considering the function

f(x) = 1 ? (x - 1)3, which is strictly increasing on the interval [0,2] but has zero slope at x = 1.
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member organisms. This simple point is worth bearing in mind. There is a large

literature on the conditions that will lead organisms and their genomes to evolve

towards greater complexity (see, for example, Brooks and Wiley 1988; Weber and

Depew 1988; Yockey 2005). This is not our subject.

Analysis of the two-state process

Returning to our three-case breakdown, we can easily assess Case (1), in which the

lineage definitely starts in one state (equivalently: the probabilities of the two

starting states are 0 and 1), by consulting Fig. 1. The starting entropy is minimal,

since the starting probabilities p0 and p1 have values of 0 and 1. If the lineage starts

in state 0, we need to track the values of PrðXt ¼ 0jX0 ¼ 0Þ and PrðXt ¼ 1jX0 ¼ 0Þ
as the lineage duration t is increased; if the lineage starts in state 1, we need to track

the values of PrðXt ¼ 0jX0 ¼ 1Þ and PrðXt ¼ 1jX0 ¼ 1Þ. When a drift process is in

place, the first two probabilities draw closer together and, in the limit, converge on

0.5; the same pattern holds for the second two. Our first observation, therefore, is:

Proposition 1a In a two-state Markov process in which there is pure drift and the
lineage starts evolving in a definite state, conditional entropy strictly increases.

The situation is different when selection is present. The right-hand side of Fig. 1

represents the lineage transition probabilities when there is selection for state 1.

Notice that PrðXt ¼ 1jX0 ¼ 1Þ and PrðXt ¼ 0jX0 ¼ 1Þ draw closer together, but

remain well-separated, as the lineage duration increases. The entropy steadily

increases. The pattern is different when the lineage begins in state 0. In this case,

PrðXt ¼ 0jX0 ¼ 0Þ and PrðXt ¼ 1jX0 ¼ 0Þ cross at 0.5. This means that:

Proposition 1b In a two-state Markov process in which there is selection for state
1, the quantity H(Xt|X0 = i) is everywhere increasing if the lineage begins in state
i = 1, but it increases and then decreases if the lineage begins in state i = 0.

These two trajectories are depicted in Fig. 2.

We now turn to Case (2). If the lineage’s initial state is characterized by the

equilibrium probabilities p0 and p1, the probability of being in state 0 never changes

with time; the same is true of the probability of being in state 1. That is, the expected
state of the system never changes. It follows that:

Proposition 2a In a two-state Markov process in which the lineage’s initial state
is characterized by the equilibrium probabilities, the unconditional entropy never
changes.

But what happens to the conditional entropy? A special case of a later result

(Proposition 5(ii)) has the following implication:

Proposition 2b In a two-state (continuous) Markov process in which the lineage’s
initial state is characterized by the equilibrium probabilities, the slope of the
conditional entropy is always positive.
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An example in which there is selection for state 1 and the conditional entropy

initially increases and then levels off is depicted in Fig. 2; this is a continuous-time

Markov process in equilibrium where the equilibrium probabilities are p0 = 0.2 and

p1 = 0.8.

Case (3) is the most general of the three, in that (3) subsumes both (1) and (2).

One obvious fact about this general case follows from Proposition (1a). If the

lineage’s entropy increases if it starts in state 0 and also increases if it starts in state

1, then any weighted average of these two will increase as well:

Proposition 3a In a two-state Markov process in which there is pure drift, the
conditional entropy is strictly increasing.

No such obvious generalization attaches to Proposition 1b where the pattern of

entropy change depends on the starting state. However, Proposition 2b can be

strengthened. If the lineage’s starting probabilities are ‘close’ to the equilibrium

values p0 and p1, the conditional entropy will be strictly increasing. The following

result places Proposition 2b in a more general setting.

Proposition 3b In a two-state Markov process, the conditional entropy always
increases if the (ordinary) entropy does.

Notice that this result obtains regardless of whether the process at work is drift or

selection. Proposition 3b is a special case of Proposition 5(i), to be stated below.

Fig. 2 Change in entropy functions with t for a continuous-time two-state model with selection for state
1 (p0 = 0.2 and p1 = 0.8). H(Xt|X0 = i) is everywhere increasing for i = 1, but for i = 0 it increases to a
local maximum and then declines. If these two entropies are averaged according to their equilibrium
distribution, the resulting conditional entropy, H(Xt|X0), is everywhere increasing. Time is measured in
units of the expected number of substitutions for the process in equilibrium
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General Markov processes

We turn now to the analysis of a general Markov process, Xt (either discrete or

continuous),6 on a finite state space with N states. For such a process, a probability

distribution on states is an equilibrium distribution p = (p1,…,pM) if for each initial

starting state i, the probability that the process is in any state j at time t converges to

pj as t grows.

The two-state Markov process has an equilibrium distribution, except in degenerate

cases.7 Markov processes on more than two states can fail to have equilibrium

distributions for more generic reasons, and we describe some shortly. A sufficient (but

not necessary) condition for a Markov process to possess an equilibrium distribution is

that all the transition probabilities (or rates for a continuous process) are strictly

positive. This is a very strong requirement, since often it is not possible to move

directly from one state to another in a single jump, so we can look for a weaker

sufficient condition which is called ‘irreducibility’: for any two states i and j, there is a

sequence of states starting with i and ending with j and for which each transition has

strictly positive probability (or rate). This condition must hold for each ordered pair of

states i, j (including the case i = j if the chain is discrete).

For a continuous-time Markov process, this irreducibility condition is sufficient

for the existence of an equilibrium distribution for the process. For a discrete chain,

it is ‘almost’ sufficient, but not quite (because, roughly speaking, it is possible for a

discrete process to traverse states in a deterministic cyclic fashion). Rather, a

sufficient condition for a discrete Markov chain to have an equilibrium distribution

is that the chain is both irreducible and ‘aperiodic,’8 in which case the (discrete)

Markov process is sometimes said to be regular. Regularity turns out to be

mathematically equivalent to the following condition: for some fixed number t of

time steps, it is possible to move from any state to any other in exactly t steps.

Moreover, t can be taken to be N2 � 2N þ 2 (Seneta 1973). We will use the phrase

‘regular Markov process’ to refer to either a regular Markov chain or an irreducible

continuous-time Markov process.

The ‘Markov chain convergence theorem’ (see, e.g., Häggström 2002) says that

any finite-state Markov process that is regular has an equilibrium distribution.

Moreover, this distribution is strictly positive on all states, and it is the unique

stationary distribution9 for the process.10

6 We also assume, as usual, that the process is time-homogeneous—that is, the transition probabilities (or

rates) do not change over time.
7 The exceptional cases arise if both u, v are zero (and in the discrete chain case if u, v are both 1).
8 See, for example, Häggström (2002) for a precise definition of aperiodicity. A sufficient condition for it

to hold is that PrðXt ¼ ijX0 ¼ iÞ[ 0 for each state i and t = 1. Moreover, if the chain is irreducible a

sufficient condition is simply that PrðXt ¼ ijX0 ¼ iÞ[ 0 for at least one state i and t = 1.
9 A stationary distribution of a Markov process is any distribution on the states that satisfies the condition

that if X0 is chosen according to that distribution, then Xt also has this distribution for all t [ 0. An

equilibrium distribution is stationary, but not conversely; indeed, a Markov chain may have infinitely

many stationary distributions but no equilibrium distribution.
10 The Markov chain convergence theorem is a consequence of the well-known Perron-Frobenius

theorem (as applied to irreducible matrices), see e.g. Grimmett and Stirzaker (2001, p. 295).
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Entropy for a general Markov process

For any Markov process the conditional entropy is given by11:

HðXtjX0Þ ¼
X

i

piHðXtjX0 ¼ iÞ ð3Þ

where pi is the probability that the initial state (X0) is i, and

HðXtjX0 ¼ iÞ ¼ �
X

j

PrðXt ¼ jjX0 ¼ iÞ logðPrðXt ¼ jjX0 ¼ iÞÞ

is the entropy conditional on an actual initial state i (Case 1 above, the ‘definite

starting state’). Formula (3), which also can be written as

HðXtjX0Þ ¼ �
X

i;j

pi PrðXt ¼ jjX0 ¼ iÞ logðPrðXt ¼ jjX0 ¼ iÞÞ

generalises our earlier description of conditional entropy for the two-state process.

This conditional entropy should be contrasted with the ordinary (i.e. uncondi-

tional) entropy, H(Xt), which is defined as:

HðXtÞ ¼ �
X

j

PrðXt ¼ jÞ logðPrðXt ¼ jÞÞ ð4Þ

Notice that PrðXt ¼ jÞ is related to the quantities used to define conditional entropy

by the equation:

PrðXt ¼ jÞ ¼
X

i

pi PrðXt ¼ jjX0 ¼ iÞ:

Thus, pi = Pr(X0 = i), and in the special case where pi ¼ pi (the equilibrium

frequency) for each state i, we have PrðXt ¼ jÞ ¼ pj for all states j and all t C 0.

Example

To further explain the two concepts of entropy, we provide an example from

population genetics. Consider a haploid population consisting of N individuals, each

of which has one of two character states (A or B). Consider how the frequencies of

these two character states vary through time under the usual population-genetic

models that allow pure drift (no selection) and some low symmetric rate of mutation

between the states (so neither state reaches fixation in the population). If we assume

that the population size remains constant and there are discrete time steps (e.g., a

Wright-Fisher model12 with symmetric mutation), then the number Xt of individuals

carrying character state A at time step t forms a finite-state Markov chain on the

state space {0,1,2,…,N}. Moreover, it is easily seen to be a regular Markov chain

11 Summations are over all the states (or pairs of states). We use i throughout to denote the initial state

and j to denote the state at time t.
12 The Wright-Fisher model is a classical Markov chain in population genetics in which each generation

is replaced by the next (see e.g. Durrett 2002).
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and so has an equilibrium distribution (whose shape depends on the magnitude of

the mutation rate). Assume that this process is in equilibrium; then the expected

value of Xt will be N/2, and classical population genetics furnishes a probability

distribution for each of the N ? 1 values that is symmetric about the mean. The

entropy does not change with time, as we assume the process is in equilibrium. By

contrast, suppose that at a particular moment (call it time = 0) one were to count

how many individuals actually carry character state A. This observation will provide

information about the frequency of trait A at any future time t [ 0, even if the

observed value at time 0 happens to be the expected frequency (namely, N/2). Note

that the entropy of the probability distribution of different states at time t given a

particular present observation is not the conditional entropy. Rather, the former

quantity corresponds to the analogue of Case (1) (‘Definite starting state’), though

here the state space is of size N ? 1 rather than 2. It is the term H(Xt|X0 = i) above,

if i is the present observation. By contrast, conditional entropy H(Xt|X0) is the

expected value of H(Xt|X0 = I), if we were to observe the unknown (random)

number of individuals I carrying character A at time 0. It thus is the analogue of

Case (3) (‘Probabilistic starting state’) above.

We can modify this simple example (while retaining the assumption of small

mutational input) to include frequency independent selection, as well as frequency-

dependent selection in which one or both character states become increasingly

favored the higher its frequency is in the population. For example, suppose both

states are subject to equal positive frequency-dependent selection. Formally this

could be modeled by a Moran-type model13 in which all self and adjacent transition

probabilities pii; pii�1; piiþ1 are positive and the difference piiþ1 � pii�1 is positive

and increasing as i gets closer to N, and negative and decreasing as i gets closer to 0.

Intuitively, it would seem that if the initial state is larger than N/2, then the process

will tend to get pushed towards N and stay near there; similarly, it may seem that for

an initial state less than N/2, the population will tend to get pushed towards 0 and

will stay near there. So it would seem that observing the state of the system even

infinitely far into the future will provide some information about its starting state.

This intuition is mistaken; the process described is regular and so the Markov Chain

convergence theorem applies. Multiple adaptive peaks do not immunize a lineage

from information loss if the lineage has a nonzero probability of crossing valleys.

Rather, as we will see in §8, peaks merely slow the rate of information loss.

Inequalities and dynamics

Although the two quantities—entropy and conditional entropy—can (and usually

do) differ in value, there is a fundamental and classic inequality from information

theory that connects them: the conditional entropy of the lineage after t units of time

never exceeds the entropy of the lineage at that time. That is:

13 In the Moran model each step of the process involves the death of a single individual and its

replacement by a new one (see e.g. Durrett 2002).
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HðXtjX0Þ�HðXtÞ ð5Þ

Inequality (5) is a consequence of a far more general inequality, namely that for any
two random variables X, Y (regardless of Markov processes or time) we have

HðXjYÞ�HðXÞ. Inequality (5) is maximal at t = 0 (since H(Xt|X0) = 0 for t = 0)

and the non-negative difference H(Xt) - H(Xt|X0) converges to zero as t grows for

any Markov process that has an equilibrium distribution.14 Inequality (5) makes

intuitive sense when entropy is interpreted as a measure of uncertainty: learning the

system’s state at t = 0 cannot on average increase your uncertainty about what its

state will be later on.

There are two ways in which the weak inequality (5) can be an equality. The first

is if pi = 1 for some state i. In that case, observing the state at time 0 tells you

nothing about the process (including its likely state at time t) that you did not know

without observing it; you knew already what state it must be in at time 0. In this

special case, the following equalities hold:

HðXtÞ ¼ �
X

j

PrðXt ¼ jÞ logðPrðXt ¼ jÞÞ ¼ �
X

j

pij logðpijÞ ¼ HðXtjX0 ¼ iÞ

¼ HðXtjX0Þ:

But even when the initial distribution is not this extreme, there are simple discrete-

time Markov chains for which (5) is an equality for all positive values of t; i.e.,

HðXtjX0Þ ¼ HðXtÞ for all t [ 0, in which case the initial state tells you nothing

about any future states. An example, from Mossel (1998), is the Markov chain with

four states 1,2,3,4, with an arbitrary non-zero initial distribution p1, p2, p3, p4 [ 0,

and transition probabilities:

p11 ¼ p12 ¼ p23 ¼ p24 ¼ 0; p13 ¼ p14 ¼ p21 ¼ p22 ¼ 1=2; and p3j ¼ p4j

¼ 1=4; for all j:

The transition matrix P for this chain, and the transition digraph, are:

P =

0 0
1

2

1

2
1
2

1
2

0 0

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4   

   
   
   

   
   
   
   ⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎦ 

⎥ 
⎥ 

This Markov chain is regular. Yet after just two time steps we have no idea (from

X2) which of the four possible initial states the process was in at time 0, since the

four states have equal probability after two time steps, regardless of the starting

state.15 Notice also that this particular matrix P is singular (i.e., its determinant

14 Since both HðXtÞ and HðXtjX0Þ converge to �
P

i

pi logðpiÞ.

15 We describe a further interesting property of this chain in the Section ‘‘Tree-like evolution’’.
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det(P) is zero16). The condition det(P) = 0 is not possible for a continuous-time

Markov process.17 In particular, for the two-state process described in the

Introduction, we always have det(P) [ 0 (technically, this discrete process embeds

within a continuous-time process). Let us call a Markov process non-singular if it is

either a continuous-time process, or if discrete, its transition matrix has non-zero

determinant. With this in hand, we have the following result (the proof of which is

given in the Appendix), which states that for a non-singular Markov process the

expected amount of information that the initial state provides about a future state

never vanishes completely in any finite time:

Proposition 4 For a non-singular Markov process, and with pi [ 0 for at least
two states i = i1, i2, the weak inequality (5) is strict for all t [ 0, i.e.
HðXtjX0Þ\HðXtÞ.

Regarding the dynamic behavior of conditional entropy as a function of time, the

non-negative difference H(Xt) - H(Xt|X0) between unconditional and conditional

entropy is exactly identical to the so-called ‘mutual information’ I between X0 and

Xt, denoted I(X0; Xt), which measures how much observing the state of the process

at time 0 tells you, on average, about which state the process will be in at time t, and

vice versa (a formula for I is given in the Appendix). A fundamental property of

Markov models is the ‘data processing inequality’ in information theory which

states that if Y ! W ! Z is a Markov chain, then IðY ; ZÞ� IðY ; WÞ:18 Applying

this to Y ¼ X0; W ¼ Xt; Z ¼ Xt0 for t0[ t; gives a classic result:

Proposition 5a For any Markov process, I(X0; Xt) is non-increasing as a function
of time.

We will see later that for non-Markovian mixtures of Markov processes, mutual

information can exhibit markedly different dynamics. However, for Markov

processes, Proposition 5a has the following consequences for the dynamics of

conditional entropy:

Proposition 5b In a finite-state Markov process the conditional entropy is always
increasing if either: (i) the entropy is increasing; or (ii) the lineage’s initial state is
characterized by a non-trivial19 equilibrium distribution; or (iii) the process has a
uniform non-trivial equilibrium distribution.

Part (i) is equivalent to Theorem 4 of Sober and Barrett (1992); both it and part (ii)

follow directly from Proposition 5a, while part (iii) requires more detailed argument

(see Cover and Thomas 1991, p. 35).

16 An equivalent definition of singularity is that we can write some row of the matrix as a linear

combination of the other rows. Singular matrices are thus, in some sense, ‘exceptional’.
17 Since the transition matrix of a continuous process acting for time t with intensity matrix Q can be

written as exp(Qt), and Jacobi’s formula assures us that det(exp(Qt) = exp(tr(Q)t) [ 0.
18 Y ! W ! Z means that W screens off Y from Z. If, in addition, Z screens off Y from W, then the

inequality IðY ; ZÞ� IðY ; WÞ becomes an equality (see, e.g., Cover and Thomas 1991).
19 Non-trivial here means that the equilibrium distribution assigns strictly positive probability to at least

two states.
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The rate of information loss

When the mutual information I(X0; Xt) between X0 and Xt converges to zero as t
grows, the present state of a system tells you progressively less about the future state

the further you look into the future. Moreover, for a regular Markov process this loss

of information is rapid. Not only does the future become harder to accurately predict

with time; it becomes, in a sense, ‘exponentially harder’ with time. This is made

precise by the following result (the proof of which is given in the Appendix):

Proposition 6 For any finite-state Markov process that is regular,
IðX0; XtÞ�Ce�ct for all t [ 0, where the constants C, c [ 0 depend on just the
process. Thus, I(X0; Xt) converges to zero exponentially quickly with increasing t.

However, for non-regular Markov processes, I(X0; Xt) need not converge to zero

with increasing t. We illustrate this with a ‘toy’ example from Sober and Steel

(2002) of a chain on three states, and with a variation of our population-genetic

example of drift with symmetrical mutation.

Consider first the chain on three states, with uniform distribution for X0

(p1 = p2 = p3 = 1/3) and transition matrix and transition digraph given by:

P =

1

3

1

3

1

3
0 1 0

0 0 1⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

⎥ 

This Markov chain is aperiodic (but not irreducible, since one cannot move from

state 2 or 3 to any other state). Moreover, det(P) is non-zero. However, I(X0; Xt)

converges to a non-zero value as t tends to infinity. In other words, observing the

state at time 0 provides an expected amount of information about the future state

that never vanishes no matter how far into the future you look.

As a second and more biologically-relevant example, consider the population

genetic process described earlier, in which the frequency Xt of character state A in a

population of size N at time t is subject to pure drift. Suppose there is no mutation

between states, so the population eventually becomes fixed either with Xt = 0 or

Xt = N (these are the two ‘absorbing states’ of the Markov chain). Suppose that at

time 0 each of the N ? 1 possible states for X0 is equally probable. Thus pi is

uniform and the population is equally likely to become fixed at all-A or at all-B. In

that case, the unconditional entropy H(Xt) decreases, from its maximal value of

log(N) at time 0 to log(2) as t tends to infinity. The behaviour of the conditional

entropy H(Xt|X0) is more interesting, and is described in the following result, whose

proof is given in the Appendix.

Proposition 7 In the Wright-Fisher model for neutral genetic drift with no
mutation in a haploid population of size N (large) where at time 0 each of the N ? 1
possible states for X0 is equally probable, H(Xt|X0) initially increases (as t grows)
from its value of zero at time 0, but later decreases to a limit that is strictly less than
the corresponding limit of H(Xt).
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Moreover, as with the modification to our ‘toy’ example, the mutual information

I(X0; Xt) in this process of drift without mutation does not converge to zero as t tends

to infinity. In this process, any observation at time 0 (other than N/2 if N is even)

tells you which state (0 or N) is more likely to be the absorbing state, and the closer

your observation lies to one of these two absorbing states the more information you

gain.

Notice that introducing any non-zero symmetrical mutation into this model, no

matter how small, results in a fundamental jump in the limit of I(X0; Xt) as t tends to

infinity; it jumps from a non-zero value to 0, by the Markov chain convergence

theorem. Allowing a low non-zero mutation rate in the model means that

Proposition 6 applies (so I(X0; Xt) converges to zero exponentially fast with t) but

the constants C, c depend on the model. In particular, as the mutation rate shrinks to

zero, one or both of these constants will also converge to zero.

So whether there is zero mutational input matters a lot to the trajectory of the

mutual information. With zero mutation, the mutual information asymptotes to zero;

with nonzero, the mutual information does not. However, the difference between

these two situations disappears if we consider only finite lineage durations. For any

finite time t, the mutual information is positive. What matters for practical purposes

is not what happens in the infinite limit but how much information an observation at

one time provides about another that is finitely far away.

Another example in which the rate of information loss is lowered involves

frequency-dependent selection. Consider a population in which each individual has

trait A or trait B, and selection favors the trait that is in the majority. Selection will

push the lineage to either all-A or to all-B, depending on the lineage’s starting state.

If we observe this lineage at one time, how much does this observation tell you

about the lineage’s state earlier or later? If there is mutational input, Proposition 6

applies and you know that the mutual information decays to zero (and exponentially

fast) and in the infinite limit it is zero. Without mutational input, Proposition 6 does

not apply (since the process is not irreducible) and the mutual information is

positive even in the limit. But for finite temporal intervals, the mutual information is

positive, regardless. It is larger when there is no mutation. And in both cases, the

mutual information is larger when there is frequency dependent selection for the

majority trait. These differences are reflected in the magnitude of the constants C
and c in Proposition 6. Once again, the actual rate of information loss at some time t
in the finite future is heavily influenced by the properties of the model.

Looking into the past

One also can consider the conditional entropy of the state of a Markov process t
time steps back into the past, given the present state. This case is described by the

following formal identity from information theory20:

20 Equation (6) follows from symmetry of the mutual information function I, so that

HðXtÞ � HðXtjX0Þ ¼ IðX0; XtÞ ¼ IðXt; X0Þ ¼ HðX0Þ � HðX0jXtÞ.
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HðX0jXtÞ ¼ HðXtjX0Þ þ HðX0Þ � HðXtÞ ð6Þ
This equation applies whether or not the process is in equilibrium. If it is in

equilibrium (as it is in our population-genetic example of drift), then

HðX0Þ ¼ HðXtÞ, in which case it follows that HðX0jXtÞ ¼ HðXtjX0Þ. In other

words, if we are going to observe the system’s present state, our expected

uncertainty concerning the state of the system t time steps into the future is the same

as our expected uncertainty concerning the state of the system t time steps in the

past. This does not mean that the Markov process would appear the same when run

forward or backward in time (this is what ‘time reversibility’ means in Markov

chain theory21), as the last equation applies for any Markov process in equilibrium.

Note also that the rate of information loss as we move t time steps into the past is the

same as that described in Proposition 6 for t time steps into the future, provided once

again that the process is in equilibrium.

If the process is not in equilibrium, the comments above need to be modified. The

difference HðX0Þ � HðXtÞ tells you whether your present observation is expected to

tell you more about the process t time steps in the future or about t time steps in the

past (the former applies if HðX0Þ � HðXtÞ[ 0, the latter if HðX0Þ � HðXtÞ\0).

This difference in the unconditional entropies is the criterion for whether

conditionalizing on an observation is expected to provide more information about

the future or about the past.

Non-Markov processes

A discrete time process has the Markov property precisely when, for any time t,
states i and j, and history h we have:

Prðsystem is in state j at time t þ 1 system is in state i at time tj Þ ¼
Prðsystem is in state j at time t þ 1 system is in state i at time tj
& system had history h before time tÞ:

At first glance, it may seem that every sensible model of a physical process must

have the Markov property; otherwise, the model will entail some sort of weird

‘‘action at a temporal distance’’ whereby the past can influence the future without

having that influence transmitted through the present. In fact, a perfectly reasonable

model of a process can violate the Markov property if the model is causally

incomplete. For example, consider the fact that Mendelian inheritance is generally

thought to be Markovian; grandparents influence the genotypes of their grandchil-

dren only by way of influencing their children. There is no action at a temporal

distance in genetic transmission. However, this fact about the process does not mean

that there can’t be models in population genetics in which the state of generation 3

depends not just on the state of generation 2 but on that of generation 1 as well. The

21 A process is time-reversible precisely when it is in equilibrium and piPr(Xt = j|X0 = i) =

pjPr(Xt = i|X0 = j) for all states i, j and t [ 0. Any two-state process in equilibrium is time-reversible,

whether it involves drift or selection. For any n [ 2 there are n-state Markov processes that are not time-

reversible (Häggström 2002).
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theory of inbreeding provides a case in point; when all matings in an infinite

population are between sibs, the heterozygosity (Zt) in generation t depends on the

heterozygosity in the previous two generations, t - 1 and t - 2 (Crow and Kimura

1970, p. 87):

Zt ¼
1

2

� �

Zt�1 þ
1

4

� �

Zt�2

The process of inheritance is Markovian, but models of the process can fail to be

when they are causally incomplete.

One formal device for constructing a non-Markov model is by taking a mixture of

two or more Markov processes; Chang (1996, p. 213) makes this point in connection

with phylogenetic inferences that use DNA substitution models. Mixture models

have becomes widely used in molecular phylogenetics to model rate heterogeneity

across DNA sequence sites (and, more recently, to model changing processes in a

tree). To illustrate a particularly simple example of rate heterogeneity across sites,

and how this leads to non-Markovian behavior, consider a simple model of DNA

site substitution in which each site can either be ‘on’ (free to undergo substitution)

or ‘off’ (invariable due to functional or structural constraints), and these two classes

remain fixed through time. Then the state Xt of a randomly-selected site at time t
(namely, A, C, G, or T) can be modeled as a mixture of two Markov processes (one

a regular model of site substitution, the other a trivial Markov process in which each

state remains unchanged). It is easily seen that Xt is not a Markov process, as the

past is not conditionally independent of the future given a present observation. For

example, we have:

PrðXt ¼ AjXt�1 ¼ A&Xt�2 ¼ AÞ[ PrðXt ¼ AjXt�1 ¼ AÞ;

since knowing that a site has remained unchanged for two time steps provides some

evidence that it is in the ‘off’ class and so is more likely to be found in that same

state at the next time step.

Another simple non-Markov model can be constructed by using the two-state

Markov model described earlier. We previously represented selection for state 1 by

way of the inequality u [ v; symmetrically, selection for state 0 can be expressed by

the inequality u \ v. Each of these models is Markovian. Now let us mix these two

models together by supposing that there will be selection for state 1 if the lineage

begins in state 1 and selection for state 0 is the lineage begins in state 0. The lineage

transition probabilities for this new model are depicted in Fig. 3 (using the

assumption that u = x1 [[ v = x2 when there is selection for state 1 and

u = x2 \\ v = x1 when there is selection for state 0). This mixed model violates

the Markov property because the probability a lineage has of being in state 1 at time

t ? 1 depends, not just on the state of the lineage at time t, but also on the values of

u and v, and those values depend on the state of the lineage at time t = 0.

Each of the Markov models (the one with u [ v, the other with u \ v) is regular

as long as 0 \ u, v \ 1, and so the Markov chain convergence theorem guarantees

that the mutual information that characterizes the relationship between a past and a

future time slice of the process asymptotes to zero exponentially fast as the temporal
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separation of the two slices increases. However, the new mixed model is not

Markovian and it has the interesting property that the mutual information between

past and future does not asymptote to zero. As can be seen from Fig. 3, ascertaining

the initial state of the lineage helps you predict the lineage’s state in the future, even

when the initial and future moments are infinitely separated. The same point holds

for inferring past from present; even if the past time slice is infinitely long ago,

observing the present state of the lineage helps you infer its initial state.22

In the example just described of a non-Markov process, the conditional entropy

monotonically increases (see Fig. 4). However, it is easy to describe another

example in which the conditional entropy behaves differently. Consider the mixed

model that we have just described but with a twist: selection now favors the opposite
state to the one in which the lineage begins. Thus, let us suppose the lineage starts,

with equal probability, in state 0 or 1, and if the lineage starts in state 0 the process

converges to an equilibrium of (x, 1 - x), where 0 \ x \ �, while if the lineage

starts in state 1 the process converges, at the same rate, to an equilibrium of (1 - x,

x). In this case the conditional entropy HðXtjX0Þ initially rises with increasing t from

its initial value of 0 at t = 0 to a maximum value of log(2) at t ¼ f ðxÞ, where f is a

function that tends to infinity as x increases towards �. However, for values of t
greater than f(x), the conditional entropy HðXtjX0Þ declines as t grows towards an

asymptotic limit of the entropy of the equilibrium distribution (x, 1 - x) of each

process, namely gðxÞ ¼def �x logðxÞ � ð1� xÞ logð1� xÞ (see the Appendix, Part

B, for details). In other words, when we observe the present state of the system, our

Fig. 3 A non-Markov model in which there is selection for state 1 when the lineage begins in state 1 and
selection for state 0 when the lineage begins in state 0

22 This discussion corrects some of what Sober (2008, pp. 300–306) says about a model of frequency

dependent selection for the majority trait; the model is nonMarkovian.
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expected uncertainty about the state of the system in the near future will be greater

than our uncertainty for the distant future.

The stronger the selection, the closer to zero is the limiting value of the system’s

conditional entropy in the distant future (since g(x) tends to 0 as x decreases to 0).

Fig. 4 The dynamics of conditional entropy and mutual information for two non-Markov processes.
Each process is a mixture of a matching pair of two-state regular Markov processes; each non-Markov
process models a form of selection. Upper: If selection favors the lineage’s initial state, then mutual
information and conditional entropy change monotonically. Lower: If selection works against the
lineage’s initial state, then mutual information can drop to zero and then start increasing, a behavior that
is impossible for any Markov process (cf. Proposition 5a). See text for further details
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Notice that, as selection weakens and more and more resembles the case of pure

drift (i.e., as x increases towards �), the decline of HðXtjX0Þ is pushed further into

the future by the stated property of f(x). Furthermore, in this example, the entropy

HðXtÞ remains constant at log(2) for all values of t, and so the mutual information

IðX0; XtÞ initially declines from its initial value of log(2), reaching 0 at t = f(x)

before increasing towards its asymptotic limit of logð2Þ � gðxÞ. These dynamical

aspects of mutual information and entropy are illustrated in Fig. 4 for the case in

which x = 0.1.

In the mixed models just described, the transition probabilities deterministically

depend on the lineage’s starting state. The more general point is that the mixed

model will fail to be Markovian if the lineage transition probabilities are

probabilistically dependent on the state of the lineage at any time. Non-Markovian

models don’t always have the mutual information remaining positive in the infinite

limit, but a general sufficient condition for this can now be stated.

Suppose we have k [ 1 regular Markov processes, M1;M2; . . .;Mk, each on the

same state space S, each with its own equilibrium distribution p1; p2; . . .; pk.

Consider the following random process (Xt : t� 0) on state space S. At time t = 0

we select model Ma with probability qa and select a state according to some initial

distribution (pa) of model Ma. This is the (random) initial state X0. We then evolve

this state according to this Markov process (Ma) for time t. We refer to the process

Xt as a mixture of Markov processes. We say that this mixture is proper if (i) qa [ 0
for at least two values of a, (ii) the initial distributions pa are not all equal, and (iii)

for each state i, pa
i [ 0 for at least one a.

Recall that for any regular Markov process the mutual information between the

initial state and the state at time t always decays to zero (and exponentially fast).

Yet, with mixtures of two such processes the behavior of the mutual information

function with increasing time is markedly different, as the following result shows.

Proposition 8 For any proper mixture of any two regular Markov processes with
different equilibria: lim

t!1
IðX0; XtÞ[ 0:

That is, the mutual information between X0 and Xt does not decay to zero. Notice

that the condition that the initial distributions are not all identical is implied by the

non-identity of equilibria condition when the initial distribution for each chain is its

equilibrium distribution.

Proposition 8 is an immediate corollary of the following more general result for

mixtures of k C 2 regular Markov processes, whose proof is given in the Appendix.

Let P be the k � jSj matrix whose rows are the vectors p1; p2; . . .; pk.

Proposition 9 For a proper mixture of any k C 2 regular Markov processes,
lim
t!1

IðX0; XtÞ[ 0 if the rows of P are linearly independent.

We end this section by noting that mixtures do not provide the only way to

generate a non-Markov model from Markov models. A more general device is to

take a Markov model defined on some large state space, but then to suppose that the

process we are able to observe is merely some property or ‘shadow’ of the states in

that larger space. More precisely, given a Markov process Zt on a state space X, and
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a function f : X! S the process Xt = f(Zt) is sometimes referred to as a lumped
Markov process.23 As an example, consider the model of DNA site substitution with

invariable sites described near the start of this Section. This was described as a

mixture of two regular Markov processes on four states, but it can be equally well

described as a lumped Markov process in which X is the eight-element set {Aon,

Aoff, Con,…} and f simply ignores the subscript on each state. This is no

coincidence, as any finite mixture of Markov processes can be described as a

lumped Markov process for a suitable choice of f and X (Appendix, part B, provides

a proof). Moreover, this alternative viewpoint using a lumped process can

accommodate biological phenomena that cannot easily be described by mixtures.

For example, suppose that in the model of DNA site substitution with invariable

sites we make the following adjustment: sites that are ‘off’ may turn ‘on’ and sites

that are ‘on’ may turn ‘off’, according to a further Markovian mechanism. The

resulting 8-state Markov process on X is a simple ‘covarion drift’ process (based on

Walter Fitch’s covarion model from the early 1970s; see Tuffley and Steel 1997b).

As before, the lumped process on the (observable) states {A,C,G,T} is no longer

Markovian; but the twist now is that this lumped process provably cannot be

represented as a finite mixture of Markov processes.24

Tree-like evolution

We have considered changes in the conditional and unconditional entropies of a

Markov process as it unfolds in a single lineage through time. However, Markov

processes are also widely used in evolutionary biology to study the evolution of a

discrete character on a bifurcating phylogenetic tree (Felsenstein 2004). In

particular, the states observed at the tips (leaves) of an evolutionary tree (which

correspond to present-day species) contain information about the state at an

ancestral node. Consider, for example, the tree shown in Fig. 5a, and assume that

the same Markov process applies to each of the seven edges in this tree. Under the

usual Markov assumptions, the leaves D2 and D3 are conditionally independent

given the state at C. But D2 and D3 are not conditionally independent given the state

at the root node R. By the ‘information-processing inequality’ (described just prior

to Proposition 5a), the pair D2 and D3 conveys at least as much information

concerning the state at C as at R. But an interesting question arises for this tree:

From which two pairs of leaves—(D1, D4) or (D2, D3)—do we learn more about the

ancestral state at R? The answer turns out to depend on the type of process at work.

It might seem that the pair (D1, D4) is preferred as it provides two independent

observations generated from R, as compared with the two observations (D2, D3),

which are non-independent, owing to a period of ‘shared history’. Indeed, the

mutual information between the states at (D1, D4) and R is at least as large as the

mutual information between the states at (D2, D3) and R for certain Markov

23 A lumped Markov process is not generally a Markov process; necessary and sufficient conditions for it

to be so are well known (see, for example, Kemeny and Snell 1976).
24 This follows from results in Tuffley and Steel (1997b).
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processes, such as the two-state symmetric process (pure drift) (Evans et al. 2000).

Remarkably, however, for other (discrete) Markov processes exactly the opposite

inequality can hold, as shown by (Mossel 1998).25 The latter paper furnishes a

particularly striking instance of this inequality based on the four-state Markov chain

described in Section ‘‘Inequalities and dynamics’’. If we apply this transition matrix

to each edge of the tree in Fig. 5a, then the mutual information between the pair (D2,

D3) and R is strictly positive; yet for (D1, D4) and R, the mutual information is

identically zero.26

For a general Markov process on the tree in Fig. 5a, the collection of states at the

leaves D1, …, D4 may tell you more about the ancestral state at R than about C if

arbitrary transition matrices on the seven edges of the tree are allowed. This last

result may seem to go contrary to the information-processing inequality (which,

loosely stated, says that the present provides more information about the recent past

than it does about the more distant past), but this isn’t so; the information-

processing inequality concerns a ‘‘chain internal’’ comparison. The four leaves will

be more informative about R than about C in a two-state drift model in which the

rate of substitution is very low on the edges leading to D1 and D4, yet very high on

the other three edges of the tree.

Allowing rates to vary among edges in this way seems to involve ‘cheating’ and

suggests a more interesting question: is it possible for the leaves of a tree to be more

informative about the state of a deep ancestral node than a more recent node, under

a two-state drift model that has a constant rate of substitution? Perhaps surprisingly,

the answer is yes, though we need to go to larger trees to find cases in which this is

true. Consider the tree in Fig. 5b, in which the root node R is t years in the past, C is

t/2, and the ‘triangular’ tree is a completely balanced binary tree with n - 2 = 2h

leaves, with edges of equal length (and equal to the edge joining the triangular tree

to R). Suppose there is a substitution rate r on all edges of the tree. Using results

Fig. 5 a A tree in which the pair of leaves D1, D4 can tell you either more—or less—than the pair D2, D3

does about the state of an ancestral node R, depending on the model. b A tree in which the present-day
leaves can tell you more about an ancient node R than about a more recent one C. See text for details

25 Sober (1989) uses a likelihood framework to show that with a two-state drift process, the pair of

observations D1 = 1 and D4 = 1 provides stronger evidence that R = 1 than does the pair of

observations D2 = 1 and D3 = 1; however, with other processes, the relationship reverses.
26 The mutual information is positive for (D2, D3) and R because if we observe state 1 at D2 and state 3 at

D3 then C must be have been either in state 3 or 4, and so R cannot have been in state 2. The mutual

information is zero if we replace (D2, D3) by (D1, D4) because taking two steps in the chain produces the

uniform distribution from any starting state.
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from Evans et al. (2000), the following result can be established: for any d[ 0 (no

matter how small) one can select n sufficiently large, and an appropriate substitution

rate r so that if X is the collection of states observed at the n leaves, and XR, XC are

the states at the nodes R, C respectively, then:

IðXR; XÞ[ 0:1 and yet IðXC; XÞ\d:

In other words, present-day observations could, in certain cases, be more

informative about a node that is 1 billion years old than they are about a node

that is merely 500 million years old.27

Mutual information can also be analysed on larger trees. For example, for the

two-state symmetric (drift) model, a general bound on the mutual information

between the state at the root X0 of a phylogenetic tree t years in the past and the

states at the set Yt of n present-day leaves of the tree has been described (Sober and

Steel 2002). The result, based on a crucial inequality from (Evans et al. 2000), states

that

IðX0; YtÞ� ne�4rt

where r is the rate of substitution. This inequality provides limits on the accuracy

one can hope to achieve when reconstructing ancestral states deep in the past,

depending on the conflicting interplay of the substitution rate and the number of

present-day observations.

To illustrate the implications of this inequality, consider any phylogenetic tree in

which a single ancestral species that existed t = 9 million years ago now has

n = 100 current descendants, where drift is the process at work in branches. If the

rate of substitution is 1 per 3 million years, then the mutual information connecting

the 100 descendants to their most recent common ancestor is at most 0.0006. What

does this number mean? Before you look at the states of a character across the 100

leaf species, your prior probabilities for the two possible states of their most recent

common ancestor are �, �. If you now look at the state of the 100 descendants,

how much will your observation change these prior probabilities? The answer is that

the change is, in expectation, about 0.0006. Moreover, no method can estimate the

root state from the leaf states with accuracy more than (about) � ? 0.0006; this is a

consequence of Fano’s inequality (see Cover and Thomas 1991). In other words,

your prospects in this situation are essentially no better than what you’d be able to

achieve by ignoring the leaf states and just tossing a fair coin. With less time

separating root and leaves, or more descendants, or a smaller substitution rate, the

epistemic situation would be rosier. Further results in this direction have been

developed by (Mossel 2003) and (Mossel and Steel 2005).

We end this section by noting that, for any tree, and any Markov process, we

maximize the expected information about the state at an ancestral node by observing

the states at all present-day leaves; with respect to the tree in Fig. 5a, this means

using the observed states at all four leaves D1 - D4. Stated formally, if X is the

collection of states at all the leaves, and Y is the collection of states at just some of

the leaves, then, for any Markov process, IðX0; XÞ� IðX0; YÞ, where X0 is the state at

27 A related example, involving maximum parsimony, was described by Fischer and Thatte (2009).
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any ancestral node in the tree.28 This result from information theory helps justify the
principle of total evidence.

This inequality does not preclude the possibility that some methods for inferring

anestral states may perform better on certain trees when the observations used are

restricted to the states at just some of the leaves. A case in point is maximum

parsimony (which is ordinaly equivalent with maximum-likelihood, if there is a

symmetric (drift) Markov process at work on each character on each branch and

branch lengths are considered as nuisance parameters (Tuffley and Steel 1997a,

Theorem 6). In this case, it has recently been shown that the accuracy29 of ancestral

state estimation can sometimes be improved by using the observed states at a subset

of the leaves (for details, see Fischer and Thatte 2009, Theorem 1).30 However, for

maximum likelihood estimation in the absence of nuisance parameters, accuracy is

provably maximized by using all the observations available (see e.g. Berger 1985,

p. 159).

Concluding comments

There is no general principle of entropy increase in Markov processes of evolution.

True, if a Markov process is in equilibrium, then the conditional entropy HðXtjX0Þ
always increases. But if a lineage does not begin at equilibrium, the entropy can be

strictly increasing, or strictly decreasing, or increasing and then decreasing. This

point holds whether it is entropy or conditional entropy that one wishes to track. Nor

is there any simple relationship between the entropy trajectory and the question of

whether the process has a direction (as in selection) or not (as in drift). Drift without

mutation leads entropy to decline, whereas drift with mutation can lead entropy to

increase. And selection can destroy variation (in which case the entropy goes down),

but it also can produce a stable polymorphism (in which case the entropy may go

up).

Matters become more orderly when we leave the value of a single entropy behind

and focus on the difference between two entropies—the unconditional and the

conditional. For any Markov process, the mutual information IðX0; XtÞ ¼ HðXtÞ �
HðXtjX0Þ is non-increasing. It converges to zero if the chain is regular but for other

chains it can converge to a nonzero limit. It vanishes completely in finite time only

for ‘singular’ processes (Proposition 4). Since continuous-time Markov processes

can’t be singular, the bad news of information zeroing out in finite time does not

arise in that case. For a regular chain, the rate at which IðX0; XtÞ goes to zero is

28 This inequality is an immediate consequence of the data-processing inequality (referred to just before

Proposition 5a) since X0 ! X ! Y is a Markov chain.
29 ‘Accuracy’ here refers to the expected probability of correctly reconstructing the ancestral state by the

method.
30 If the state of all the leaves on a tree provides at least as much information about the state of the root as

any subset of the leaves provides, and if parsimony sometimes does better at reconstructing the state of

the ancestor when it consults only a subset of the leaves, then parsimony sometimes misinterprets what

the full data set is saying. Of course, the sub-optimal performance of parsimony in this context leaves

open that the method might perform optimally under other models of evolution.
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exponential with t, but the rate depends heavily on the details of the model (e.g.,

frequency-dependent selection can make the rate of information loss much slower

than the rate associated with drift ? mutation or with frequency independent

selection).

Mixtures of Markov processes—and more generally lumped Markov processes—

can fail to be Markovian. Even when a non-Markovian mixed process is regular, the

mutual information between two time slices ‘usually’ fails to asymptote to zero as

the temporal separation of the slices increases; exceptions to this rule arise if the

component Markov processes have equilibria that are linearly dependent or the

initial distributions of the component processes are the same.

The loss of information within a tree—as one moves from present-day

observations at the leaves towards ever deeper ancestral nodes—involves additional

complexities. It is possible for the leaves to tell you more about more ancient nodes

than about ones that are more recent. The (exponential) rate of loss of information

with time in a chain is tempered by the number of present-day observations; ancient

ancestors often have more present day descendants than more recent ancestors do,

and in this respect the character states of ancient ancestors may be more accessible.

In addition, information about an ancestral node is maximized by using all present-

day observations even though some estimation procedures can be more accurate

when they use only a subset of the observations.
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Appendix: Technical details

Part A: Proof of propositions

First recall that the ‘mutual information’ I between X0 and Xt is defined, as usual, as:

IðX0; XtÞ ¼
X

ij

PrðX0 ¼ i&Xt ¼ jÞ log
PrðX0 ¼ i&Xt ¼ jÞ

PrðX0 ¼ iÞ PrðXt ¼ jÞ

� �

: ð7Þ

This can be rewritten in terms of the transition probabilities ðPrðXt ¼ jjX0 ¼ iÞÞ,
initial distribution (pi) and subsequent distribution (Prt(j)) of states as:

IðX0; XtÞ ¼
X

ij

pi PrðXt ¼ jjX0 ¼ iÞ log
PrðXt ¼ jjX0 ¼ iÞ

PrðXt ¼ jÞ

� �

: ð8Þ

A straightforward and well-known inequality in information theory is that:

IðX0; XtÞ ¼ HðXtÞ � HðXtjX0Þ: ð9Þ
To justify Proposition 4, it suffices, by (9), to show that IðX0; XtÞ[ 0: Notice that

I(X0; Xt) is the Kullback–Leibler distance between the probability distributions

pi PrðXt ¼ jjX0 ¼ iÞ and pi PrðXt ¼ jÞ. In particular, I(X0; Xt) = 0 implies that these

two probability distributions are identical—that is, pi PrðXt ¼ jjX0 ¼ iÞ ¼
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pi PrðXt ¼ jÞ for all pairs of states i, j (including i = j). As there are two distinct

values of i for which pi [ 0 then the two corresponding rows of the matrix P ¼
½pij� ¼ ½PrðXt ¼ jjX0 ¼ iÞ� are identical (since pij ¼ PrðXt ¼ jÞ in both cases), and so

det(P) = 0. This contradicts our assumption in Proposition 4, and so IðX0; XtÞ[ 0:
Next we turn to the proof of Proposition 6. The regularity assumption implies

that, for all states i, j we have: pi� e and j PrðXt ¼ jjX0 ¼ iÞ � pjj �Be�ct for

strictly positive constants B; c; e (see, for example, Rozanov, 1969; Theorem 7.4). It

follows that the logarithmic term in IðX0; XtÞ from (7), namely, log
PrðXt¼jjX0¼iÞ

PrðXt¼jÞ

� �
,

can be written as logð1þ Oðe�ctÞÞ ¼ Oðe�ctÞ, where O is the usual order notation.

In particular, for some C [ 0 we have IðX0; XtÞ�Ce�ct
P

ij

pi PrðXt ¼ jjX0 ¼ iÞ ¼

Ce�ct; as claimed.

We turn now to the proof of Proposition 7. For the Wright-Fisher model, it is well

known that:

lim
t!1

PrðXt ¼ jjX0 ¼ iÞ ¼
i=N; if j ¼ N;

ðN � iÞ=N; if j ¼ 0;
0; otherwise:

0

@

Thus,

lim
t!1

HðXtjX0 ¼ iÞ ¼ � i

N
log

i

N

� �

� 1� i

N

� �

log 1� i

N

� �

: ð10Þ

Now, for i selected from the uniform distribution, lim
t!1

HðXtjX0Þ ¼

1
Nþ1

PN

i¼0

limt!1 HðXtjX0 ¼ iÞ; and so, from Eq. (10), lim
t!1

HðXtjX0Þ ¼ logðNÞ

� 2
NðNþ1Þ

PN

i¼1

i logðiÞ: Thus,

lim
t!1

HðXtjX0Þ ¼
2

ðN þ 1Þ
XN

i¼1

� i

N
log

i

N

� �

� 2

Z1

0

�x logðxÞdx ¼ 1

2
;

where * refers to asymptotic equivalence as N !1. In summary, we have the

following inequality: lim
N!1

lim
t!1

HðXtjX0Þ ¼ 1
2
\ logð2Þ ¼ lim

N!1
lim
t!1

HðXtÞ: Now

consider HðX1jX0Þ. Conditional on X0 ¼ i, the distribution of X1 under the

Wright-Fisher model is binomial with N trials and probability p ¼ i
N. Thus,

HðX1jX0 ¼ iÞ is the entropy of a binomial distribution with these parameters. Since i
is uniformly distributed between 0 and N it can be shown that HðX1jX0Þ grows at the

order log(N) so, for N sufficiently large, 0 ¼ HðX0jX0Þ\HðX1jX0Þ, and also

HðX1jX0Þ[ lim
t!1

HðXtjX0Þ: This justifies the claims in Proposition 7.

Finally we justify Proposition 9. Let us suppose that limt!1 IðX0; XtÞ ¼ 0; we

will show that this implies the rows of P are linearly dependent. Notice that the

condition limt!1 IðX0; XtÞ ¼ 0 implies (via Pinsker’s inequality) that:
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lim
t!1

PrðXt ¼ j&X0 ¼ iÞ � PrðXt ¼ jÞ PrðX0 ¼ iÞ½ � ¼ 0; for all pairs of states i, j,

which in turn implies that:

lim
t!1

PrðXt ¼ jjX0 ¼ iÞ � PrðXt ¼ jÞ½ � ¼ 0; ð11Þ

for all i, j (note that the event X0 = i has strictly positive probability for all states i
by the assumption that the mixture is proper). This further implies the following

condition holding for all states i, i0, j:

lim
t!1

PrðXt ¼ jjX0 ¼ iÞ � PrðXt ¼ jjX0 ¼ i0Þ½ � ¼ 0; ð12Þ

by using Eq. (11) twice (once for the conditioning event X0 = i and once for

X0 ¼ i0). Let Z denote the index a 2 f1; . . .; kg of the model Ma that is selected at

the start of the process; thus Z = a with probability qa. We have:

PrðXt ¼ jjX0 ¼ iÞ ¼
Xk

a¼1

PrðXt ¼ jjX0 ¼ i&Z ¼ aÞ PrðZ ¼ ajX0 ¼ iÞ:

Now, since the Markov process Ma is regular, the Markov chain convergence

theorem assures us that, lim
t!1

PrðXt ¼ jjX0 ¼ i&Z ¼ aÞ ¼ pa
j ; for all i, and so:

lim
t!1

PrðXt ¼ jjX0 ¼ i&Z ¼ aÞ ¼
Xk

a¼1

pa
j PrðZ ¼ ajX0 ¼ iÞ:

Combining this with Eq. (12) gives the following constraint:

Xk

a¼1

pa
j � ðPrðZ ¼ ajX0 ¼ iÞ � PrðZ ¼ ajX0 ¼ i0ÞÞ ¼ 0; ð13Þ

for all states i, i0, j. Now, suppose that:

PrðZ ¼ ajX0 ¼ iÞ � PrðZ ¼ ajX0 ¼ i0Þ ¼ 0; ð14Þ

for all states i, i0 and index a. We have PrðZ ¼ ajX0 ¼ iÞ ¼ PrðX0 ¼ ijZ ¼
aÞqa= PrðX0 ¼ iÞ; by Bayes’ Theorem. Furthermore, since PrðX0 ¼ ijZ ¼ aÞ ¼ pa

i

(the initial state distribution for Ma) Eq. (14) implies that pa
i = PrðX0 ¼ iÞ ¼

pa
i0= PrðX0 ¼ i0Þ; for all states i, i0 and index a. It follows that we can write pa

i ¼ cida;
for all states i, and indices a, where ci does not depend on a and da does not depend

on i.31 Thus, from which the identity:
P

i
pa

i ¼ 1 ¼
P

i
pb

i for any two distinct indices

a, b we obtain da = db and thus pa
i ¼ pb

i for all i; that is, the initial distribution of

any two models are equal, in violation of our assumption.

Thus we may suppose that there exists states i, i0 and an index a for which

PrðZ ¼ ajX0 ¼ iÞ � PrðZ ¼ ajX0 ¼ i0Þ 6¼ 0. Then the row vector D ¼ ½Da� defined

by

Da :¼ PrðZ ¼ ajX0 ¼ iÞ � PrðZ ¼ ajX0 ¼ i0Þ;

31 To see this, note that we can take ci ¼ PrðX0¼iÞ
PrðX0¼1Þ; da ¼ pa

1:
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for a ¼ 1; 2; . . .; k, is not equal to the zero vector 0 and yet from Eq. (13) we have

DP ¼ 0; so the rows of P are linearly dependent. This completes the proof.

Part B: Proofs of other claims in Section ‘‘Non-Markov processes’’

First we justify the analysis reported for the mixed model in which the lineage starts,

with equal probability, in state 0 or 1, and if the lineage starts in state 0 the process

converges to an equilibrium of (x, 1 - x), where 0 \ x \ �, while if the lineage

starts in state 1 the process converges, at the same rate, to an equilibrium of (1 - x,

x). From (7) we have:

IðX0; XtÞ ¼
X1

i¼0

X1

j¼0

PrðXt ¼ j&X0 ¼ iÞ log
PrðXt ¼ j&X0 ¼ iÞÞ

PrðXt ¼ jÞ PrðX0 ¼ iÞ

� �

:

Now, PrðXt ¼ jÞ ¼ 1
2

for all t C 0. Also, for i = 0,1, if Pri refers to the

Markov process that applies if the initial state is i, then PrðXt ¼ j&X0 ¼ iÞ ¼
1
2

PriðXt ¼ jjX0 ¼ iÞ; and so:

IðX0; XtÞ ¼
X1

i¼0

X1

j¼0

1

2
PriðXt ¼ jjX0 ¼ iÞ logð2PriðXt ¼ jjX0 ¼ iÞÞ: ð15Þ

Setting aðtÞ :¼ xþ ð1� xÞe�t=c; bðtÞ :¼ ð1� xÞð1� e�t=cÞ; gives:

Pr0ðXt ¼ 0jX0 ¼ 0Þ ¼ Pr1ðXt ¼ 1jX0 ¼ 1Þ ¼ aðtÞ;
Pr0ðXt ¼ 1jX0 ¼ 0Þ ¼ Pr1ðXt ¼ 0jX0 ¼ 1Þ ¼ bðtÞ:

Consequently, by Eq. (15), we have:

IðX0; XtÞ ¼ aðtÞ logð2aðtÞÞ þ bðtÞ logð2bðtÞÞ: ð16Þ

Since aðtÞ ¼ bðtÞ ¼ 1
2

for the value tx of t for which e�t=c ¼ 1�2x
2ð1�xÞ; we have

IðX0; XtÞ ¼ 0 at t = tx. Routine analysis with Eq. (16), now gives limt!1
IðX0; XtÞ ¼ logð2Þ � gðxÞ; as claimed.

Finally, we justify the assertion that a finite mixture of Markov processes can be

described as a lumped Markov process. Suppose a process Xt is described by a finite

mixture of Markov processes Maða ¼ 1; . . .; kÞ, each on state space S, with model

Ma selected with probability qa, and with pa
i as the initial distribution of state i in

model Ma. Let X ¼ fðs; aÞ : s 2 S; a ¼ 1; . . .; kg and consider the following Markov

process Zt on X. Select the initial state ði; aÞ 2 X with probability qa � pa
i and define

transition probabilities on all ordered pairs of states from the set X as follows:

PrðZt ¼ ðj; aÞjZ0 ¼ ði; aÞÞ ¼ PraðXt ¼ jjX0 ¼ iÞ, where PraðXt ¼ jjX0 ¼ iÞ is the

transition probability within the model Ma, and PrðZt ¼ ðj; bÞjZ0 ¼ ði; aÞÞ ¼ 0 for

all a = b and all states i, j. Then, under the function f : X! S defined by

f ððs; aÞÞ ¼ s, the processes (Xt; t C 0) and (f(Zt); t C 0) have the same distribution;

that is, mixtures are just a special case of lumped processes, as claimed.
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Häggström O (2002) Finite Markov chains and algorithmic applications. Cambridge University Press,

Cambridge, UK

Kemeny JG, Snell JL (1976) Finite Markov chains. Springer-Verlag, New York

Mossel E (1998) Recursive reconstruction on periodic trees. Random Struct Algorithm 13(1):81–97

Mossel E (2003) On the impossibility of reconstructing ancestral data and phylogenies. J Comput Biol

10:669–678

Mossel E, Steel M (2005) How much can evolved characters tell us about the tree that generated them?

In: Gascuel O (ed) Mathematics of evolution and phylogeny. Oxford University Press, Oxford,

pp 384–412

Pinelis I (2003) Evolutionary models of phylogenetic trees. Proceedings of the Royal Society B

270(1522):1425–1431

Rozanov YA (1969) Probability theory: a concise course. Dover Publications Inc, New York

Semple C, Steel M (2003) Phylogenetics. Oxford University Press, Oxford, UK

Seneta E (1973) Non-negative matrices: an introduction to theory and applications. Wiley, New York,

pp 52–54

Sober E (1989) Independent evidence about a common cause. Philos Sci 56:275–287

Sober E (2008) Evidence and evolution: the logic behind the science. Cambridge University Press,

Cambridge, UK

Sober E, Barrett M (1992) Conjunctive forks and temporally asymmetric inference. Aust J Philos 70:1–23

Sober E, Steel M (2002) Testing the hypothesis of common ancestry. J Theor Biol 218:395–408

Tuffley C, Steel MA (1997a) Links between maximum likelihood and maximum parsimony under a

simple model of site substitution. Bull Math Biol 59(3):581–607

Tuffley C, Steel MA (1997b) Modeling the covarion hypothesis of nucleotide substitution. Math Biosci

147:63–91

Weber B, Depew D (1988) Entropy, information, and evolution: new perspectives on physical and

biological evolution. MIT Press, Cambridge

Yockey H (2005) Information theory, evolution, and the origin of life. Cambridge University Press,

Cambridge

E. Sober, M. Steel

123


	Entropy increase and information loss in Markov models of evolution
	Abstract
	Introduction
	Conditional entropy versus ordinary entropy
	Analysis of the two-state process
	General Markov processes
	Entropy for a general Markov process
	Example
	Inequalities and dynamics
	The rate of information loss
	Looking into the past
	Non-Markov processes
	Tree-like evolution
	Concluding comments
	Acknowledgments
	Appendix: Technical details
	Part A: Proof of propositions
	Part B: Proofs of other claims in Section ‘‘Non-Markov processes’’

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


