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Wayward Modeling: Population
Genetics and Natural Selection*

Bruce Glymour†‡

Since the introduction of mathematical population genetics, its machinery has shaped
our fundamental understanding of natural selection. Selection is taken to occur when
differential fitnesses produce differential rates of reproductive success, where fitnesses
are understood as parameters in a population genetics model. To understand selection
is to understand what these parameter values measure and how differences in them
lead to frequency changes. I argue that this traditional view is mistaken. The descrip-
tions of natural selection rendered by population genetics models are in general neither
predictive nor explanatory and introduce avoidable conceptual confusions. I conclude
that a correct understanding of natural selection requires explicitly causal models of
reproductive success.

1. Introduction. What is natural selection, how do appeals to selection
explain evolutionary events, and how are descriptions of natural selection
to be formulated if such descriptions are to enable reliable forecasts of
evolutionary outcomes; in a word, how is natural selection to be under-
stood? For some 70 years biologists and philosophers alike have taken
population genetics to provide the core formal machinery for describing
and understanding natural selection and the evolutionary events it pro-
duces. I will call this the core commitment.

Population genetics does not and is not taken to provide a complete
description of any instance of selection. But nearly all of philosophy of
biology concerned with the conceptual foundations of evolutionary the-
ory, and much of evolutionary biology itself, take the descriptions offered
by population genetics models to be relevantly complete. Such descriptions
are held to be sufficient to generalize over and hence unify episodes of
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selection, to provide quantitative as well as qualitative predictions about
changes in type frequencies, and to explain these outcomes.

The core commitment shows itself in various ways. The consequences
of selection are typically represented within the population genetics frame-
work rather than within, say, a population regulation framework, a prima
facie more plausible alternative given that what selection does, if anything,
is produce differential rates of reproductive success. For example, selection
is commonly understood as one among several forces driving deviations
from Hardy-Weinberg equilibria rather than as a biased distribution of
values over some set of variables that cause reproductive success. Or again,
such measurable features as selection has are measured using the ma-
chinery of population genetics, for example, such quantities as the strength
of selection, the opportunity for selection, and the response to selection.

The core commitment shows itself as well in the way the analytic or
simulation results from population genetics are understood. These results
are commonly constituted by qualitative constraints on allelic or genotypic
frequencies at equilibrium resulting from qualitative relations between
parameters in the model, for example, fitnesses, mutation rates, and ef-
fective population size. The crucial parameter related to selection in pop-
ulation genetics models is fitness or its analytical relative, a selection
coefficient. Accordingly, to understand selection’s influence on frequency
change is, at least implicitly, to understand the way in which differential
fitnesses lead to changes in type frequencies in contexts specified by the
values of the other parameters in population genetics models.

Philosophers have by and large agreed, more or less uniformly adopting
the core commitment and in practice endorsing its consequences. For
those concerned with the conceptual foundations of evolutionary theory,
the core commitment implicitly delimits the range of philosophical prob-
lems demanding investigation and the range of potential solutions to those
problems. For philosophers, the most central of these problems is to give
an adequate interpretation of the fitness parameter in population genetics
models and, secondarily, to use that interpretation to formulate acceptable
versions of the principle of natural selection and adequate accounts of
evolutionary explanation. The influence of the core commitment is illus-
trated by a passage from the philosopher of biology who in distinguishing
between ‘source’ and ‘consequence’ laws has come closest to relinquishing
it, namely, Elliott Sober. Sober writes,

Whereas it is mainly ecology that tries to provide source laws for
natural selection, the consequence laws concerning natural selection
are preeminently part of the province of population genetics. It
doesn’t matter to the equations in population genetics why a given
population is characterized by a set of selection coefficients, mutation



POPULATION GENETICS AND NATURAL SELECTION 371

and migration rates, and so on. These values may just as well have
dropped out of the sky. (Sober 1984, 59; italics in original)

Consider the implications. The consequences of selection do not depend
on the causal details by which fitness differences arise, but only the single
facet of selection characterized by those differences. Predictively useful
characterizations of selection must be formulated in terms of fitness dif-
ferences, for it is these coefficients which are used in the consequence laws,
that is, population genetics. In fact, the source laws themselves may be
bits of population genetics; for example, the most frequently cited example
derives from Fisher’s account of sex ratios. That is no accident: source
laws such as those emerging from optimal foraging theory, Fisherian or
Zahavian theories of sexual selection, and other pieces of evolutionary
ecology nearly always measure success with respect to some component
of fitness. But there are trade-offs between components of fitness, and it
is population genetics that provides the machinery for finding the optimal
balance. The understanding of selection that results embodies the core
commitment.

Whether an attempt to understand selection is itself regarded as a bit
of biology or a bit of philosophy, most such efforts have been implicitly
or explicitly framed by the core commitment. It has been a presupposition
of such endeavors that to understand selection-driven evolution in a pop-
ulation is to have an appropriately detailed population genetics model of
the population, and that abstracting from such descriptions is adequate
to formulate the important generalizations about selection. I think the
presupposition is in error. The task of interpreting fitness, philosophers
of biology will note, has proved so enormously difficult that despite 30
years of work by some terrifically able people, we are nowhere near a
plausible, much less demonstrably correct, solution. The limitations of
population genetics in modeling evolutionary phenomenon are also not
far to seek: for a large range of cases population genetics is both explan-
atorily and predictively incompetent. More, the descriptive apparatus of
population genetics forces us to address a host of seriously intractable
conceptual problems that otherwise do not arise at all. I think the reasons
for these limitations are simple: population genetics models evolving pop-
ulations with the wrong variables related by the wrong equations em-
ploying the wrong kinds of parameters.

Let me be clear about the charge. I do not mean to impugn population
genetics as false, or even irrelevant. Models in population genetics serve,
and serve well, for a surprising number of purposes. But I do claim that
population genetics models are, on their own, inadequate to convey an
understanding of selection, either in general or in particular cases, and
hence are the wrong models to employ when offering an analysis of se-
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lection, abstracting from particular instances of selection to generaliza-
tions unifying disparate episodes of selection, or characterizing the nature
of explanatory appeals to natural selection.

2. Predictive Incompetence. I claim that population genetics models are
the wrong models in terms of which to frame an understanding of natural
selection because such models are predictively and explanatorily incom-
petent in important respects, and their use in developing a general theory
of natural selection generates avoidable conceptual confusions. In this
section and the next I defend the first of these charges. Models in pop-
ulation genetics are predictively incompetent in two respects. They do not,
in general, reliably predict the trajectory of particular populations through
state-spaces defined by the frequencies of types in the population, and
they do not, in general, reliably predict changes in state variables con-
sequent to interventions on other state variables (I shall call models that
succeed in this second respect causal models). Population genetics models
do neither, and except in special circumstances can do neither, because
they do not correctly identify or represent the dependencies between genic
types, phenotypes, environmental, and demographic characteristics that
generate differences in reproductive success. I begin the case with some
assumptions.

First, population genetics models yield reliable predictions only if some
function of absolute fitnesses of types, , reliably tracks that functionf (W)i
of actual rates of reproductive success for the types, , where the types,f (R )i
indexed by i, are just those identified by the population genetics models.1

Just which function f is at issue depends of course on the model at hand;
sometimes we are interested in absolute fitnesses, sometimes in relative
fitnesses, and sometimes in more complicated functions of expectation
and variance, but for every such model there is some such function. Fur-
ther, what counts as ‘tracking’ depends on the context. In some contexts
the demands are quite stringent: for every time t and every type i, suc-
cessful prediction requires that . In other contexts, the de-t tf (W) � f (R )i i

mands are somewhat less stringent. For each time, there is for each type
i some probability distribution over the values of and another overf (W)i
the values of at that time. On occasion it is required that at eachf (R )i
time these distributions share a mean and a variance, and perhaps other

1. In what follows, sets are in boldface, variables are capitalized, superscripts are time
indices and subscripts index by type, values are italicized, vectors of values are given
by italicized capitals, and functions are given by italicized, boldface lowercase letters.
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parameters.2 In other contexts, it suffices that the distributions share a
mean. But again, for every model of real populations, there is a substantive
notion of tracking that must be satisfied if predictions from the model
are to be reliable. Finally, I assume that, outside laboratory contexts,
distributions and moments of distributions over or are estimatedW f (W)i i

from small samples. Though samples may involve many, many individuals
(though commonly they don’t), they rarely involve many generations,
typically something fewer than 100 generations, and commonly two orders
of magnitude fewer.

Given these assumptions, let us note a peculiarity, and a pair of con-
sequences. In population genetics models, fitnesses (or functions of them)
are either fixed parameters or random variables drawn from some constant
distribution. It follows that fitnesses and functions of them are not en-
dogenous variables in population genetics models. That is the peculiarity:
reproductive success is caused by a host of variables, but fitnesses, which
must track reproductive success, are not endogenous in our models. From
this peculiarity, two important consequences arise. First, when one models
populations in the wild, estimates of the values of or distribution over

or must be more or less direct inferences from the data; that is,W f (W)i i

one estimates the true value of or the true distribution over orW f (W)i i

directly from the sample distribution over or .3 Second, nongeneticR f (R )i i

causes of reproductive success are not represented.4 I claim it follows from
either of these consequences that estimates of or are seriouslyW f (W)i i

unreliable: estimated values of or will in general not track trueW f (W)i i

values of or . It follows that population genetics models are inR f (R )i i

general predictively unreliable. The arguments from each consequence are
related but take distinct forms, so I’ll give each in turn.

2.1. The Argument from Direct Estimation. Consider a fully specified
population genetics model of some arbitrary population, fitted to data

2. ‘Parameter’ is used in two distinct senses in this paper. In the first sense a parameter
is a value for some moment of a probability distribution, as, e.g., a mean, variance,
or standard deviation. In the second sense, a parameter is a fixed value in some equation
relating an endogenous variable to one or more exogenous variables, as a in Y p

. For the most part, I leave the distinction to be indicated by context, but whenaX
precision seems called for, I will qualify the first sense of parameter with ‘statistical’.

3. A special case arises when fitnesses are estimated from considerations of optimality.
Note that when maximally successful types differ in character from the theoretical
optimum, it is more commonly the estimate of optimality that is revised. The empirical
data on reproductive success are, nearly always, the final arbiters of our estimates of
fitness in natural populations.

4. I thank a referee for pointing out that many of these causes may be heritable, as,
e.g., when migration from a natal environment is not random.
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drawn from the population over some initial time interval. The state
variables G in such a model are frequencies for types i at times t, wheretGi

types are identified by some partition of the population into genic or
genotypic classes. G comprises two subsets: G0, comprising the input var-
iables , and response variables Gn, comprising the variables for0 nG Gi i

arbitrary n. The response variables Gn are related to the variables G0 by
some set of equations in which absolute or relative class fitnesses appear
either as parameters or as exogenous variables. In a fully fitted model,
all parameters have estimated values, and there is some specified joint
probability distribution over all variables without specific values, as, for
example, error terms and fitnesses if these are treated as exogenous var-
iables rather than as parameters.

Now note that the absolute and relative fitnesses and are byW wi i

definition statistical parameters, typically expectations, characterizing the
true distribution over reproductive success relative to an environment.
The fitnesses in the fitted model are therefore estimates of those statistical
parameters conditional on an environment. What exactly is this ‘envi-
ronment’? Presumably, a set of variables E such that changing the value
of one or more of these variables changes the probability distribution over
rates of reproductive success for some class i in the population. That is,
the E variables are causes of rates of reproductive success. We then have
two choices. We can individuate environments by specific sets of values
for variables in E or by specific probability distributions over the variables
in E. Let us use the term ‘narrow environment’ to refer to a vector of
specific values E for the E variables and call a probability distribution
over vectors of values for the E variables a ‘generalized environment’.

Suppose we take fitnesses to be expectations conditional on narrow
environments. Then the values of the fitness parameters/exogenous var-
iables used in our fitted model are estimates of a statistical parameter,
say the mean, characterizing the probability distribution over reproductive
success relative to a narrow environment. We fit our favored population
genetics model to the measured data taken from the population over
generations 1 to j. We then generate predictions from our fitted model as
to the behavior of the population over generations to n, say. Nearlyj � 1
always our predictions will be substantively in error, and for nonaccidental
reasons. Narrow environments nearly always change over generational
time. When they do, the fitnesses estimated over generations 1 to j will
have, conceptually and causally, no connection whatsoever to the behavior
of the population over generations to n. We have estimates, perhapsj � 1
good estimates, of the expected rates of reproductive success given en-
vironment E, a vector of values for the variables in E, whatever they are.
But our population now occupies a different environment , and abso-′E
lutely nothing in our model tells us how expectations conditional on E
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relate to those conditional on . If our predictions are right, this is the′E
sheerest accident. In effect, we are estimating a statistical parameter,

, from a sample of size zero.′exp (R FE )i

Indeed, if the environment is changing over generations 1 to i, it is hard
to make any sense of what we thought we were estimating when we fit
our favored model to the data—perhaps average expectations over narrow
environments . But why should we expect even a correct estimationE –E1 j

of that parameter—the average expectation over —to be in any wayE –E1 j

representative of the average expectation over environments ? Min-E –Ej�1 n

imally, this would require substantive constraints on the probability dis-
tribution over narrow environments and the form of the distribution over

, but nothing in the model implies any such constraints. Differently, weRi

might make it an explicit constraint on such models that they are to be
used predictively only when environments or fitnesses are constant. But
then we have very good reasons for thinking, before we ever fit model to
data, that the fitted model is flat-out incorrect by our own standards of
correctness. The model is correctly used to generate predictions only when
narrow environments or fitnesses are constant, but we have every reason
to think the narrow environment will change over generations, and with
it fitnesses.

Suppose instead we define environments as joint probability distribu-
tions over sets of variables probabilistically relevant to reproductive suc-
cess, that is, as generalized environments. Our problems are now different,
but no less severe. Unless j is quite large, our fitted model is likely to
misestimate fitnesses at generation , since these are now weightedj � 1
averages over expectations in particular narrow environments, most of
which will not be instantiated over the initial j generations. Our sample
size is not zero, but it is depressingly small relative to the size of the
variable set: if there are as many as five relevant binary environmental
variables and we have data from 10 generations, the estimate is so much
guesswork. Even if our sample is oracular about the true expectations
conditional on the (at most) 10 instantiated narrow environments in our
data set, we have no information about and no constraints on the ex-
pectations in the remaining 22 uninstantiated narrow environments, and
next to no information about the distribution over narrow environments.
Again, this would be different were we able to constrain the form of the
distributions over rates of reproductive success, but nothing in the model
implies any such constraint.

The problem in general is obvious enough. Reproductive success is
caused by a host of variables which in turn are causally related to one
another and to the state variables in a population genetics model. As the
causes vary in value over time, expectations with respect to reproductive
success vary as well. If the causes are sufficiently large in number, they
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are likely to exhibit a high sample variance, and therefore reproductive
success likely will as well. Hence, expectations for reproductive success
cannot be reliably estimated directly from the sample distribution over
reproductive success. The consequent predictive failure of population ge-
netics models is an artifact of their noncausal nature; I turn now to an
explicit defense of this claim.

2.2. The Argument from Noncausal Models. The argument which fol-
lows is made more accessible by representing the causal relations gov-
erning reproductive success using the graphical causal modeling frame-
work (Spirtes, Glymour, and Scheines 2000). Here I give a very brief,
rough, outline of the central ideas. Causal relations are taken to be asym-
metric relations of dependence between variables characterizing units in
a population of units. X is a direct cause of Y relative to a set S of
variables and a background iff there is some pair of interventions setting
the value of every variable in and differing only in the value of X,S\{Y}
between which the probability distribution over Y differs. The causal
structure over S is represented by a directed graph, in which there is an
edge from X into Y iff X is a direct cause of Y. The full causal system
includes not only the graphical representation of the causal structure but
also the joint probability distribution over S, which distribution is as-
sumed to factor according to the Causal Markov and Faithfulness
conditions.

The distribution is often partly represented by a set of equations relating
endogenous variables to their direct causes. In the linear case, the result
is a structural equation model (SEM). For example, in Figure 1, we would
write

Y p aX � bZ � � ,y

A p xY � � ,A

B p fY � � .B

One advantage of the graphical representation of causal structure is
that it enables one to easily determine which variables will be statistically
dependent, that is, associated, conditional on any other set of variables
in the model. The rules for determining these dependencies are simple,
deriving from Pearl’s d-separation theorem (Pearl 2000). To use them,
three definitions are useful. A variable is a mediator on a path if, in that
path, there is one edge into it and one edge out (rXr or RXR). A variable
is a common cause on a path if, in that path, there are two edges out of
it (RXr). A variable is a collider on a path if, in that path, there are two



POPULATION GENETICS AND NATURAL SELECTION 377

Figure 1. Causal structure over S.

edges into it (rXR). So, for example, in Figure 1 Y is a mediator on the
path XrYrA, a common cause on the path ARYrB, and a collider on
the path XrYRZ. Here then are the rules: any two variables X and Y
are associated conditional on a set V of variables iff there is some path
between X and Y such that no mediator or common cause in the path is
in V, and every collider on the path either is in V or has some effect which
is in V. In Figure 1, the variables X and Z are unassociated if we condition
on no other variables, but associated if we condition on Y, or A or B.
The variables X and B are associated unconditionally, not associated if
we condition on Y, but remain associated if we condition on A. A and
B are associated unconditionally but unassociated conditional on Y.5

Turning to the argument itself, recall that in population genetics models,
fitness or functions of them are commonly introduced as fixed parameters.
When this is not so, they are treated as random variables drawn from
some fixed distribution. Environmental and phenotypic variables, when
introduced at all, are used to constrain this fixed distribution. This im-
plicitly assumes that the dependence relations between reproductive suc-
cess and environmental or phenotypic variables are constant in form, and
further that the distribution over the environmental or phenotypic vari-
ables is itself constant. Those assumptions are in general unwarranted,
and in making them models in classical population genetics invite pre-
dictive incompetencies.

A population genetics model writes the collection of type frequencies
at generation as a function m of those frequencies and fitnesses atg � 1

5. Applications of the graphical causal modeling framework in a biological context
can be found in Shipley (2000).
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generation g: . The error term, made explicit here,g�1 g gG p m(G , W ) � �
arises from drift of all sorts; if it becomes too large, fitness will not track
reproductive success, and in consequence the model will not be predictively
useful. The size of the error depends on the extent to which Gg and

are associated, with stronger associations leading to smaller errors,g�1G
and on the extent to which fitnesses correctly quantify that association
(as, e.g., with the coefficients in SEMs). Error can be made unbounded
in two specific ways that will concern us.

First, as in structural equation models, common causes of the exoge-
nous variables and the endogenous variables must not be omitted. If such
common causes exist and change in value, then so too will the expectations
for endogenous variables. Clearly, any environmental cause of reproduc-
tive success whose value at a given generation influences its own value at
later generations will constitute such a common cause, and equally clearly,
variables representing these causes do not appear in the dynamical equa-
tions of population genetics models. If such common causes vary between
the estimation period and the projection period, error will occur.

Second, interactive causes of the dependent variable must not be omit-
ted. X and Y are interactive causes of Z if the effect of X on Z depends
on the value of Y. Unless such interactive causes are constant in value
over the projection period, changes in them may also change the joint
distribution over the endogenous variable and other interactive causes
(e.g., a change in Y will change the joint distribution over X and Z). To
see how interactive causes matter, consider time-lagged models of pop-
ulation size. In populations in which population size varies cyclically, the
rate of change in population size depends not simply on current popu-
lation size, but also on whether the population is increasing or decreasing.
This difference between years of increase and years of decrease induces
a change in the form of the functional dependence between current and
future population size, since there is a change in sign and also a difference
between the shape of the curve on the up and down slopes of the cycle.
This implies that the effect of population size now on population size in
the future depends on the value of one or more other variables not in-
cluded in the model itself. No single functional relation between present
and future population size can reliably predict population size unless those
interacting variables are included in the model. Time-lagged models of
cyclical population growth typically involve two functional relations, one
characterizing growth during years of increase and a second during years
of decrease, and use the lags to induce switching between the regimes.

If fitnesses are to reliably track rates of reproductive success, values for
the latter must be drawn from a constant distribution, with roughly the
same form and with roughly the same statistical parameters as that from
which the corresponding fitnesses are drawn. But this cannot be so if rates
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of reproductive success have interactive causes whose values vary over
the projection period, since such variation will ‘switch regimes’, that is,
change the distribution over particular rates of reproductive success .Ri

Aside from the evidence from population regulation, there are good
reasons to think there are interactive causes of rates of reproductive suc-
cess. I’ll make the case here with respect to a particular behavioral var-
iable, but the idea is perfectly general. Behaviors are environmentally
sensitive in two ways. First, there are sensitivities described by ‘choice
rules’: when in environment E do b, when in do . The pattern of′ ′E b
behaviors an individual exhibits, say in prey selection, can be described
by such choice rules. But sometimes it is advantageous to be able to switch
back and forth between choice rules over time. Call a rule for switching
between choice rules a meta-rule. Take meta-rules to be, by definition,
fixed for an individual over its life span, while choice rules need not be.
Foraging theory provides a nice example of an advantageous meta-rule.

Let – be a list of potential prey items, ordered in decreasing prof-K K1 n

itability. According to optimal foraging theory, potential prey items ought
elicit attack from a predator either always or never (the so-called zero-
one rule). Whether or not items of kind ought to elicit attack dependsKk

on the energetic demands of the predator, the profitability of , and theKk

profitability and frequencies of prey items of kinds – . The kindsK K1 k�1

upon which a predator in fact preys identify a choice rule under which
it is operating: ‘Prey on items of type – if opportunity arises, butK K1 k�1

never on items of kinds – ’. If the frequencies of items of kind –K K Kk n 1

decrease, then the choice rule ought to change—items of lower prof-Kk�1

itability ought to be added to the diet. The rule for adding or removing
items from the list of those preyed upon is, in our terms, a meta-choice
rule; when the choice rules adopted by individual predators over the course
of their lives change with time according to a meta-choice rule, there will
be interactive causes of reproductive success. The frequency of in theK2

current generation is an interactive cause of reproductive success in that
generation for any type that employs the meta-rule: the frequency of

has an effect on reproductive success if, but only if, the frequency ofK2

is sufficiently low; hence the frequency of in the current generationK K1 1

is also an interactive cause of reproductive success in the current
generation.

Prey selection is a particular case, but there is nothing very special
about it. Choice rules imply dependencies between environmental vari-
ables and behavior b. Meta-choice rules, when they exist, imply thatEc

these dependencies are interactive: the dependency between and bEc

changes form as a further set of environmental variables change inEm

value. If b is a cause of reproductive success, then and will beE Em c

interactive causes of reproductive success. Indeed, there is nothing very
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special about behaviors; these kinds of causal dependencies can equally
well hold with respect to polyphenisms and phenotypic plasticities. Meta-
choice rules should evolve whenever the optimal behavioral or phenotypic
response to an environmental signal varies with environments and the
cost of learning is small. Those conditions will not always be met, but
they are not particularly restrictive, so it is likely they will commonly be
met. When they are, classical population genetics models will fail
predictively.

3. Objections: Markov Models and the Exception That Proves the Rule.
Both the argument from direct estimation and the argument from non-
causal models exploit a pair of facts: the causes of reproductive success
vary over generational time, and the dependence relations between these
causes and reproductive success are not represented in population genetics
models. More predictive models, it would seem, will therefore require
explicitly causal models of selection. Two objections arise immediately.
The first of these takes the following form. It might be true that population
genetics ignores much causal detail at the individual level, but it does so
legitimately. Such causal detail is so much micro-causal noise. In real
populations most of this noise cancels out, so that the behavior of par-
ticular populations is closely approximated by a diffusion or branching
process whose macro-level statistical behavior can be captured without
any causal representation. This objection is mistaken.

It may be true that in reasonably large populations the behavior of the
population is approximated by, say, a mathematical description in terms
of some diffusion process. But there are two things to note. First, the
predictions generated from such models typically depend on the assump-
tion that the population is Markov in the state variables for the model;
that is, the future state of the population is statistically independent of
its past state, conditional on its current state. The state variables are in
G, and populations are almost never Markov in G. The Markov condition
will be violated whenever there is an environmental variable, say the
frequency of some predator, whose value at is an effect of variables int1

G at and a cause of variables in G at : we then have a patht t0 2

rVr which induces an association between and even when0 2 0 2G G G G
conditioning on , since V is not in . There are nearly always such1 1G G
variables, as indicated by the common necessity of introducing lagged
models of population growth. Second, given that a population is not
Markov in the state variables, then even to the extent that the models do
predict the behavior, they will misrepresent why this behavior occurs.

But there are exceptions. A second objection appeals to an undoubted
predictive success of population genetics models, the prediction of sex
ratios in diploid species. Sex ratios are a special kind of equilibrium, one
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that results from stable frequency or density-dependent selection. Suppose,
as with sex ratios, selection works against the more frequent type, so that

iff . Then the qualitative relations between fit-W 1 W Fr(C1) ! Fr(C2)C1 C2

nesses depend on selection pressures which themselves depend on class
frequencies; that is, class frequencies are the dominant variables causally
influencing reproductive success. Since these class frequencies are repre-
sented in the population genetics model, the model is able to predict the
consequences for fitness of changes in values among causes of reproductive
success. Hence the model is able to reliably predict the existence of an
equilibrium in the population over long temporal spans and over wide
ranges in values for other relevant variables. Moreover, in the case of sex
ratios, while changes in other relevant background variables may shift
the equilibrium value, they commonly do so without changing the fact
that there is always some equilibrium. That is, the dependencies between
reproductive success and class frequencies represented by the model are
relatively stable. Consequently the models provide useful law-like regu-
larities covering those shifts in equilibrium value. In short, population
genetics models enable reliable predictions of sex ratios exactly because,
in such cases, they are causal models: type frequencies, represented by
variables that do appear in the model, are causes of reproductive success,
and those causal relations are relatively stable.

For many predictive tasks of interest, the success of population genetics
models turns out to depend on whether or not those models are causal.
Such models are causal only in special cases, and so in general fail to
yield reliable predictions for a large range of important cases. As it turns
out, much the same is true with respect to explanatory success.

4. Explanatory Incompetence. There are two current conceptions of evo-
lutionary explanations. On one increasingly popular conception, evolu-
tionary explanations are essentially statistical and noncausal (Walsh, Lew-
ens, and Ariew 2002; Matthen and Ariew 2002). On this statistical
conception, evolutionary explanations aim to explain the ‘central tenden-
cies’ of a population’s trajectory through geno- or pheno-space by appeal
to the statistics describing reproductive rates among classes and the dis-
tribution among types of the offspring produced by matings between
parents with specific genotypes. These explanations are not causal, being
explicitly independent of the causal relations generating the statistical
patterns to which explanantia appeal.

Differently, one can agree that evolutionary explanations take central
tendencies as their explananda, but nonetheless insist that such expla-
nations are essentially causal. This is, I suppose, the dominant tradition,
and so I shall call it. On this view evolutionary explanations appeal to
population-level type causes to explain the central tendencies exhibited
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by populations in their trajectories through geno- or pheno-space (Sterelny
and Kitcher 1988). Accordingly, deviations from expectations are regarded
as a matter of drift, in one or another sense, and not otherwise explicable,
but the expectations from which these deviations are deviations result
from causal influences summarized by parameters whose values represent
fitness, migration, mutation, and so on. Since actual frequencies are causal
consequences of causes whose net expected effect is represented by the
parameters in the model, population genetics models provide causal ex-
planations of frequencies, at least when those frequencies reasonably ap-
proximate expectations. Or so the story goes.

The statistical conception of evolutionary explanation has been de-
fended largely by criticizing the dominant tradition on two grounds. Both
lines of criticism challenge the idea that fitness, understood as a propensity,
can underwrite causal explanations. On the first line of critique, fitnesses
are noncausal (Walsh et al. 2002; Matten and Ariew 2002). On the second,
fitnesses are nonexistent; there is no underlying fitness property to be
measured by any fitness parameter (Ariew and Lewontin 2004). In the
context of the core commitment, either charge underwrites the further
claim that evolutionary explanations are noncausal.

I do not think either line of objection is quite right, and in any case
both overlook the really important difficulties facing the dominant per-
spective. But even were these objections right, the statistical conception
of evolutionary explanation offers little improvement, unless much, even
most, of what population biologists do in their explanatory practices is
simply otiose. Field biologists care about vera causa principles when gen-
erating selection explanations. Consider a pair of particularly well-known
cases. Grant (1986) and colleagues are at pains to show that beak mor-
phology in fact causes mortality—how else to understand the importance
in their work of Price’s modeling, of measures of seed hardness and avail-
ability, and so on? Endler (1980) is at pains to show that coloration has
effects on mate choice and predation frequency in the lab and in the wild.
Why should he care, unless he cares what the facts about causation are?
It is hard to make sense of the effort, time, and money spent to show
that morphological traits thought to be under selection actually do caus-
ally influence components of fitness, and hence reproductive success, ex-
cept under the assumption that biologists think causation matters to their
explanatory endeavors. But if this is so, the statistical conception of evo-
lutionary explanations is at best only part of the story and is simply wrong
in claiming that the causal details are irrelevant, only central tendencies
matter.

Herein lies one of the several serious difficulties with the dominant view,
and the propensity interpretations of fitness used to buttress it. The causal
explanations of interest in evolutionary biology are not exhausted by those
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which appeal to type-level population causes. That, for example, beak
morphology is a type-cause of reproductive success in the Galapagos
environment is relevant, but incomplete, with respect to some of the ques-
tions Grant and Price are trying to answer, namely, did beak morphology
actually cause reproductive success for individual birds during the study
period, and did such actual causal relations occur with sufficient frequency
to account for changes in population frequencies in the study populations?
Those questions, and the explanatory use of their answers, are sensible
only on a conception of evolutionary biology according to which part of
the job is to answer questions about patterns of actual causation between
individuals and aspects of their environment. Relations of actual causation
cannot be identified without prior identification of causal relations be-
tween variables, even though the latter does not suffice for the former.
Hence, even the dominant tradition does not go far enough in its com-
mitment to causal representations of selection.

The failures of the dominant and statistical conceptions of selection
explanations are consequent to two facts. The first is that population
genetics models are, in general, noncausal models. A model is causal to
the extent that it generates reliable predictions about the values variables
in the model take consequent to ideal interventions on other variables in
the model. Population genetics models generally do not do this: inter-
ventions that set class frequencies to something other than zero or one
will in general modify fitnesses, and those modifications are not predict-
able from the model itself, since the fitnesses are not endogenous variables
in the model. For example, interventions on the frequencies of genetic
classes will induce changes in class fitnesses whenever demographic var-
iables causally influence survival and reproductive success. In such cases,
interventions on the frequencies of genetic classes produce changes in
fitnesses because the distribution of demographic variable values over the
genetic classes after intervention need not, and typically will not, mirror
the distribution prior to intervention. The new sample distribution of the
demographic variable values will influence indirectly the probability dis-
tribution over rates of reproductive success for each class, but will not be
reflected by fitnesses when those are treated as fixed parameters or ex-
ogenous variables.

The second fact is that the dominant and statistical conceptions are
both driven by the core commitment, by the idea that the formal ma-
chinery of population genetics provides relevantly complete descriptions
of selection processes. The two conceptions of explanation differ only
over the appropriateness of causal interpretations of the equations in
population genetics models, and hence of the explanations they generate.
On both conceptions, those equations and no others are required for
explaining central tendencies. In this, both conceptions err: the statistical
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TABLE 1. PREDICTIVE AND EXPLANATORY FAILURES OF POPULATION GENETICS

MODELS.

Problems
with Given Problem

Prediction:
fitness

Defined relative to narrow
environment

Narrow environments change over
generation time; estimating
from sample size of 0

Defined relative to generalized
environment

Too few generations to estimate
frequencies of component nar-
row environments; expectations
in unrealized narrow environ-
ments unknown

Prediction:
causal
structure

Standard PG models Error induced by omission of
common and interactive causes

Diffusion models Markov condition unsatisfied;
predictive success does not un-
derwrite explanatory success

Explanation Statistical interpretation Explanations are not causal; mod-
els are not causal

Dominant interpretation Actual causation matters but can-
not be identified using PG
models; PG models treated as
causal, but typically do not pre-
dict under interventions

conception in taking causal explanation to be irrelevant, the dominant
conception in taking causal interpretations of population genetics models
to be cause enough.

5. Alternative Modeling Strategies. The predictive and explanatory fail-
ures of population genetics models as diagnosed so far are briefly reca-
pitulated in Table 1. I take them to show that explicitly causal models of
selection are required for a fully competent theory of evolution by natural
selection. Sample distributions over rates of reproductive success do not
contain enough information to reliably estimate future rates of repro-
ductive success, but sample distributions over rates of reproductive success
and variables representing their genetic, phenotypic, and environmental
causes do, sometimes, contain enough information to reliably infer causal
models of reproductive success. Such models enable reliable prediction
and constitute the kind of causal description required for explanatory
endeavors characteristic of biological practice. What will such models look
like, in what sense will they represent selection, and how can unifying
generalizations be abstracted from such representations?

Whatever the mathematical form of a model, algebraic or statistical or
what have you, a model will be causal only if it specifies the pairwise
asymmetric relations of direct causal dependence between state variables.
Such relations can be represented by directed graphs over state variables,



POPULATION GENETICS AND NATURAL SELECTION 385

whether or not a given model employs this machinery. Definitions of
relevant selection concepts can be formulated using a graphical represen-
tation, at the level of either individuals or populations. Here I develop a
set of definitions assuming models of the former kind, restricting attention
to the causal structure over reproductive success; below I consider in
passing models of the second kind which involve no such restriction.

Say that a causal graph is correct but possibly incomplete if, where S
is the set of variables in the graph and X and Y are arbitrary members
of S, there is a directed edge from X to Y if and only if X is a direct cause
of Y relative to S. Such graphs are correct in the sense that they include
and correctly orient all edges between variables in S, but possibly incom-
plete in that causes of variables in S may themselves be omitted from S.
Let P be a population, and let C be a causal graph that is a correct but
possibly incomplete representation of the causal structure governing re-
productive success, R, for individuals in the population.6 Then we can
say there is selection on P just in case in some C there is at least one
directed path from at least one genotypic variable T to R, and T varies
in value over the population; further, we can say that there is selection
on a trait-variable T, just in case there is some C in which there is a
directed path from T to R, and T varies in value in the population. We
can then take a selection process to be a path in some C from some trait-
variable T to reproductive success R, and we can take such a process to
constitute selection on a particular trait-value t of T just in case an inter-
vention changing the value of T from t to , but directly affecting no′t
other cause of R, would change the distribution over R. Extensions to
notions of ‘selection for’ and ‘selection against’ require contextualization
by a specific contrast: there is selection for t as against just in case an′t
intervention changing the value of T from t to , but directly affecting′t
no other cause of R, would increase the expected value of R.

Given the prevalence of ‘population-level’ thinking in philosophy of
biology, some may worry that the above definitions of selection are in-
appropriately reductive in that they focus on individual-level causal phe-
nomena. I am not at all sure that such reduction as is implied by the
above definitions is out of place. But in any case, it is inessential, since
population-level formulations of the same basic ideas are possible. The
closest things to explicitly causal, global models of selection in population
biology, so-called ‘hierarchical’ models, are so formulated. The basic idea

6. The definitions offered implicitly take selection to occur at the level of individual
organisms. Definitions appropriate to genic selection can be constructed by replacing
R with a variable whose values represent the number of copies an allele leaves in the
next generation. Group selection is somewhat trickier; for reasons of space I can do
no more than issue a promissory note.
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Figure 2. From van Tienderen (2000, 674).

is relatively straightforward. Induce a demographic structure by dividing
a population into demographic groups defined by spatial location and
stage or age. Represent the structure of causal influences between de-
mographic groups by a directed graph over variables representing the size
of these groups. With each edge in the graph, associate a parameter rep-
resenting transition rates between distinct demographic groups directly
connected by the edge, estimated from the data. Use these parameters to
build a projection matrix model of the population. Such models predict
population size and demographic structure. Because the average fitness
in a population is typically related in straightforward fashion to changes
in population size, projection matrix models offer the opportunity to
measure quantitatively the effect of particular components of fitness on
group-to-group transition rates, and hence on overall reproductive rates.
One can then build a causal model of the effect of phenotypic or envi-
ronmental variables on components of fitness using path analysis or re-
gression methods. Introduced by van Teinderen (see van Teinderen [2000]
for an elegant introduction and Coulson et al. [2003] for an extension to
environmental variables), such ‘hierarchical models’ are essentially causal
models representing the ways in which phenotypic and environmental
variables influence reproductive success. A graph representing such a
model, taken from van Teinderen (2000), is reproduced in Figure 2.

I do not mean here to endorse the particular procedures recommended
or employed by van Teinderen or Coulson et al. There are difficulties, or
at least questions, about the adequacy of the methods: it is not clear how
the choice of demographic variables is best constrained, whether elastic-
ities or sensitivities or something else are the right statistics for edge
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loadings; and there are substantive questions about model selection for
every independent piece of the model. But I do want here to recommend
the general strategy. If a predictive and explanatory theory of natural
selection is to be had, it will require formulation in terms of models that,
like hierarchical models, explicitly represent the environmental, pheno-
typic, and genotypic causes of reproductive success.

Models of selection, in the sense here proposed, invite generalizations
that are simply unavailable without such models. For example, it may be
that particular variables—those corresponding to particular environmen-
tal, phenotypic, or genotypic features or to particular demographic fea-
tures or to particular components of fitness—are commonly related to
reproductive success by particular causal structures or involve dependen-
cies of a particular form or sign. Or again, several such variables may
commonly be related by a particular structure or system of dependencies.
Differently, it may be that particular causal structures, when realized,
reliably produce particular qualitative phenomena, for example, cycles,
chaotic patterns, shifting equilibria, and so on. One cannot know be-
forehand whether any interesting generalizations are there to be found,
of course. This depends on which variables are related by which causal
structures, and the form of those relations, in biological populations. But
one cannot know at all until explicitly causal models of those populations
are developed. The absence of such models, and hence of generalizations
over them, is relevant not just for biologists (cf. Endler and McLellan
1988) but for philosophers of biology as well. For example, the lacuna
ought to be regarded as a serious problem by those who think there are
few or no truly nomic regularities in evolutionary biology. Further, causal
models of reproductive success provide a means to compute the relative
superiority of alternative life-history strategies, allowing the calculation
of the net effect of various trade-offs without appeal to population genetics
models. They thereby provide a further source for generalizations across
distinct episodes of selection.

6. Conceptual Confusions Avoided. If, in contrast to the core commitment,
causal models are taken to provide the core formal machinery for de-
scribing processes of natural selection, a number of long-standing con-
ceptual worries disappear, and others at least seem to be susceptible to
solution. Most clearly, worries about finding some general interpretation
of fitness disappear. Since the unified description of selection processes
produced by population genetics, such as it is, is no longer also the de-
scription in terms of which we are to understand selection as an evolu-
tionary force, there is no reason for a notion of fitness common to all
such models. Adopting different definitions for different contexts is not
problematic unless we equivocate by identifying the fitness parameters on
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each occasion of use. Such equivocation is at least suggested when the
core theoretical description of selection processes is provided by popu-
lation genetics. It is not even intimated if selection processes are described
by causal models.

Somewhat less obviously, a host of incoherencies about the relation
between selection and drift simply disappear. To pick one, the idea that
there is an ‘effect’ of drift, different from and sometimes opposed to that
of selection, is clarified. The idea is nonsense. Consider possible instances
of drift. Is a case of sampling error an instance of drift? If so, then drift
is not a cause and can have no effect; sampling error is, by definition,
uncaused. Is a case of sample bias an instance of drift? If so, drift is not
something other than selection; it is merely a selection process not rep-
resented by a given model, since bias is, by definition, produced by cause
whose causal influence on the response variable is not represented in the
model. Consider a case in which no actual cause of reproductive success
in the population is an instance of any relevant causal generalization (as,
e.g., when the variables whose values are actual causes of death have zero
variance in the population: Igor but not his twin is killed by a lighting
strike before either reproduces). Is this case also an instance of drift? If
so, then drift and selection cannot be ‘opposed’ in any interesting sense:
causal generalizations and claims about actual causation are different in
kind, presupposing as they do a different framework for causal judgments.
Or again, are rates of reproductive success which result from some es-
pecially unlikely set of initial conditions a case of drift? If so, selection
and drift are not opposed, indeed not even distinct: drift is then the result
predicted by our model of selection when improbable initial conditions,
that is, unlikely values for exogenous variables, occur.

7. Conclusion. Population genetics gives us a set of extraordinarily useful
devices for representing frequency changes in natural populations and for
describing selection processes. Those uses remain important, even essen-
tial, in much of evolutionary and population biology. But, largely as an
historical accident, many biologists and nearly all philosophers have
overinvested in population genetics, in that, implicitly or explicitly, pop-
ulation genetics is taken to provide the core formal machinery for de-
scribing selection processes. This core commitment has led to a conception
of evolutionary modeling on which evolutionary biology cannot predict
many phenomena of interest and can predict others only under special
conditions. It has led biologists and philosophers alike to misrepresent
the structure and aim of evolutionary explanations, reading them as causal
explanations of the wrong explananda or, worse, as noncausal explana-
tions. And finally, it has led to avoidable conceptual confusion.

Better representations of evolutionary phenomena and their causes are,
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in principle, to be had by appeal to explicitly causal models and param-
eterizations of them. Such models ought to permit better predictions; they
will make sense of explanatory demands and explanatory practices in
biology; and they offer conceptual resources to resolve a number of long-
standing philosophic puzzles, not least those of defining selection, inter-
preting ‘fitness’, and distinguishing the effects of selection from those of
drift.

Replacing population genetics models with causal models as our core
machinery for describing and understanding selection invites other con-
cerns, in particular epistemological problems regarding model discovery,
selection, and identification. These problems are not trivial and, if not
legion, then anyway numerous. Even so, they have an advantage over
those we inherit from the last three decades of work in philosophy of
biology. Being epistemological rather than metaphysical or interpretative,
one can at least hope for a definitive resolution of them.
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