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Why the Causal View of Fitness
Survives*

Jun Otsuka, Trin Turner, Colin Allen, and
Elisabeth A. Lloyd†‡

We critically examine Denis Walsh’s latest attack on the causalist view of fitness.
Relying on Judea Pearl’s Sure-Thing Principle and geneticist John Gillespie’s model
for fitness, Walsh has argued that the causal interpretation of fitness results in a reductio.
We show that his conclusion only follows from misuse of the models, that is, (1) the
disregard of the real biological bearing of the population-size parameter in Gillespie’s
model and (2) the confusion of the distinction between ordinary probability and Pearl’s
causal probability. Properly understood, the models used by Walsh do not threaten the
causalist view of fitness.

1. Introduction. Denis Walsh (2010) has offered the latest in a series of
papers advancing a noncausal analysis of evolutionary population genetics
(Matthen and Ariew 2002; Walsh, Lewens, and Ariew 2002; Walsh 2007).
These previous papers have claimed various virtues for the alternative
“statistical” approach, but his current paper does not have much of a
positive argument. Rather, Walsh argues, using one of geneticist John
Gillespie’s equations for fitness (Gillespie 1974, 1975, 1977) and Judea
Pearl’s works on causality (Pearl 2000), that the causal interpretation of
fitness results in a reductio.

Walsh’s argument consists of two steps. First, he claims Gillespie’s
model can generate a Simpson’s paradox in fitness distribution; that is,
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the same genotype can be both fitter in all subpopulations making up a
partition of a larger population and, at the same time, less fit in the whole
population than the other genotype. Because Simpson’s paradox can arise
for genuine cases of causation, Walsh needs to invoke an additional reason
for rejecting the causal interpretation of fitness.1 For this purpose, his
second step invokes Pearl’s Sure-Thing Principle (STP; Pearl 2000), which
Walsh takes to be a necessary condition for any causal relationship. As,
he argues, the fitness distributions generated by Gillespie’s model may
fail to satisfy this principle, so it follows that fitness cannot be a causal
element.

In this reply, we will show that both of these steps contain incorrect
assumptions and serious misunderstandings. First, it will be shown that
Gillespie’s model, correctly understood, does not generate a Simpson’s
paradox as Walsh suggests. Regarding the second step, we argue that
Walsh’s application of the STP is based on a misinterpretation of the
principle. In the proper reading, there is no violation of the STP and hence
no reductio. We conclude that Walsh’s argument against a causal inter-
pretation of fitness is unsound.

2. The SS Simpson and the SS Gillespie: Ships Passing in the Night. The
first step of Walsh’s argument against the causal interpretation of fitness
is based on his claim that, under Gillespie’s selection model, which ex-
plicitly parameterizes population size, alternative descriptions of a given
biological population produce fitness distributions that can, in turn, gen-
erate a pernicious instance of Simpson’s paradox.2 Before delving into
the details, we would like to note that using Gillespie’s fitness equations
as representative of fitness models is highly idiosyncratic. The fitness mea-
sures and models used in the overwhelming majority of population ge-

1. This point is recently made by Northcott (2010) against Walsh’s previous attack on
the causal interpretation of drift (Walsh 2007). Northcott rightly points out that the
causal effect need not be additive, and consequently, it is possible that a single causal
factor produces contradicting statistical results between the micro- and the macrolevel
(i.e., Simpson’s paradox). In fact, we think that the crux of Walsh’s (2007) argument—
his thesis that causal relations are description independent—is falsified only by the
presence of Simpson’s paradoxes within genuine cases of causation. However, our focus
paper, Walsh (2010), resorts to a different principle and thus requires a separate ex-
amination.

2. Simpson’s paradox, described by Yule (1903) and Simpson (1951), is a statistical
phenomenon in which the association between two variables, say A and B, is inverted
in each subpopulation when a population is partitioned. For example, A and B can
be positively correlated in a population as a whole and at the same time be negatively
correlated in every subpopulation. In the context of this article, the two variables in
question are fitness and trait value of individuals, and the partition corresponds to the
subdivision of a biological population.
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netics do not include the population size parameter, n, which is essential
to Walsh’s argument. In fact, Steven Frank and Montgomery Slatkin
(1990) have developed a general model that has Gillespie’s model as a
special case, which does not use the parameter for population size. But
setting this aside for the sake of argument, let us examine his case against
the causal interpretation of fitness.

Gillespie’s equation shows that when there is within-generation variance
in reproductive output (i.e., individuals with the same genotype differing
in their number of offspring), the fitness of each genotype is measured
by the following equation:

2jiw p m � ,i i n

where m and j2 are mean and variance of the number of offspring, re-
spectively; n is population size; and subscript i signifies the ith genotype.
Under Gillespie’s model, it can be seen that the fitness measure is a de-
creasing function of n, which means that the genotype, G1, which is fitter
than a competing genotype, G2, in a larger population, may be less fit in
a smaller population. Walsh illustrates this by an example involving two
hypothetical genotypes having the following parameters:

2Genotype G : m p 0.99, j p 0.2;1 1 1

2Genotype G : m p 1.01, j p 0.4.2 2 2

He has us imagine, further, a situation involving 14 six-member subpop-
ulations containing both genotypes. Finally, these 14 subpopulations con-
stitute a whole population. Now, according to Gillespie’s equation, within
each subpopulation j the fitness of G1 exceeds that of G2:

.2 .4
w p .99 � p .9567 1 w p 1.01 � p .9433,j,G j,G1 26 6

where signifies a fitness measure of ith genotype in the jth subpop-wj,Gi

ulation, while, with respect to the population as a whole, G1 is less fit
than G2;

.2 .4
w p .99 � p .9876 ! w p 1.01 � p 1.005,•,G •,G1 284 84

where the dot subscript means average over subpopulations. Because of
this reversal, Walsh concludes that this situation produces a Simpson’s
paradox: the genotype that is fitter in every subpopulation is nevertheless
less fit in the population overall.

There is a serious flaw, however, in the above inference. Walsh’s ar-
gument presupposes that the means by which we define and partition a
biological population is nothing more than a matter of our descriptive
interests. He writes, “It is legitimate for biologists to investigate the dy-
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namics of whole populations and their subpopulations; howsoever the
latter are demarcated” (2010, 165; our italics). So how are we to interpret
this latter clause? Suppose we have a pregnant female. As the set of all
pregnant females (A) is clearly a proper subset of the set of all females
(B), this woman is a member of A and, at the same time, of B. In this
case, whether we describe this woman as a member of A or of B is
completely a matter of our descriptive interest. In a similar vein, Walsh
presupposes that insofar as the subpopulation is a proper subset of the
whole population, one can describe an organism as belonging to either,
and as a consequence, one can calculate, with Gillespie’s equation, two
different fitnesses for a single organism with respect to the two populations
of different sizes.

However, such an assumption ignores what the population size, n,
stands for in Gillespie’s model. As is explicit in Gillespie’s original paper
(1974, 602), n in his equation is held constant by a density-regulating
process, which determines how many juveniles survive and reproduce. The
strength of the density-regulating process usually depends on environ-
mental factors, such as habitat condition, abundance and quality of foods,
number of predators, and so on. Clearly, then, what determines population
size n is not our subjective interest but an objective property of the en-
vironment surrounding organisms. The fact that it refers to the objective
and concrete parameters, as opposed to our abstract conception of pop-
ulation, is precisely the reason why n matters to fitness, as shown in
Gillespie’s model. In other words, if the fitness measure of an individual
living in a population size of 100 is different from that of an individual
in a population size of 500, it is precisely because they are under different
density-regulating processes, arising from different sets of environmental
factors. This explains why it is meaningless in the above example to cal-
culate two different fitness measures—one for use in a given arbitrary
subpopulation and another for use in the whole population—for the same
individual. If the subpopulation constitutes the proper environment for
the individual, then the proper fitness measure of G1 is and notwj,G1

, which means, of course, that no fitness reversal arises. Therefore,w•,G1

correctly understood, Gillespie’s model does not produce a Simpson’s
paradox.3

As we have shown above, what produced the illusory paradox regarding
Gillespie’s model was Walsh’s illegitimate assumption that biological pop-
ulations can be demarcated arbitrarily. However, more generally and apart

3. Technically speaking, Gillespie’s equation is obtained by holding constant one of
the dimensions (the population size) of the two-dimensional branching process (see
Gillespie 1975, 403). For this reason, it is mathematically meaningless to compare two
fitness measures obtained by Gillespie’s model with different population sizes.
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from considerations of Gillespie’s model, Walsh’s assumption about the
arbitrary demarcation of populations is contradicted by the fact that one
of the fundamental questions in evolutionary biology is to estimate the
effective population size, Ne. A value of Ne reflects crucial aspects of the
environment surrounding an organism, which in turn has a particular
implication for evolutionary dynamics. Nunney (1999) has outlined the
importance of effective population size and factors involved in measuring
it in a variety of contexts. The mere fact that it requires measurement
and estimation suggests that it has a real underpinning and that it is not
something a biologist can set arbitrarily. Careful estimation of the true
effective population size is essential because a significant deviation in the
estimation renders the application of a theoretical model to a real bio-
logical population completely meaningless. In fact, this point has been
the central issue in the famous controversy inaugurated by Ronald Fisher
and Sewall Wright and revived recently (Coyne, Barton, and Turelli 1997,
2000; Wade and Goodnight 1998; Goodnight and Wade 2000)—the dis-
pute over whether evolution takes place in a large panmictic population
or small/structured demes. Were Walsh’s assumption true and the (effec-
tive) population size dependent on nothing more than our descriptive
interests, such controversy would lose its entire meaning—an outcome
that we suspect Walsh would embrace but that would not do justice to
the biologists’ dispute.

Familiarity with Walsh’s work provides the means by which to under-
stand why such a confusion about populations and the relationship be-
tween alternative descriptions of a population could arise in the first place.
A second (and related) difficulty in Walsh’s argument concerns causation,
specifically with respect to the questionable causal commitments he at-
tempts to burden proponents of the causal interpretation with in Walsh
(2007). More precisely, Walsh makes what he admits is a “substantive
assumption” about causation: “Causal relations are description-indepen-
dent. By this I mean that if x causes y, then this relation holds no matter
how x and y are described” (292–93). In order to make his case against
the causal interpretation of fitness, Walsh (2007) describes two interesting
simulation experiments that prefigure the Simpson’s reversal introduced
by Walsh (2010). The simulations in the 2007 paper involve what he calls
a rank order effect (the reversal of rank order given different descriptions
of a population). We will briefly describe one such simulation.

The first simulation, meant to simulate drift, involves tossing two fair
coins 50 times each, with 10 experimenters tossing one of the two coins
10 times for a grand total of n p 100 tosses. There are three important
analogues here that need to be made explicit in this simulation: the an-
alogue of fitness (of two alleles at a given locus, say) in this simulation
is, of course, the probability of a given coin to land either heads or tails;
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Figure 1. Results of coin tossing for 10 series of 10 tosses of a fair coin (Walsh
2007, fig. 1).

further, the analogue of population size is n, the number of coin tosses;
and, finally, the analogue of drift is sampling error, the deviation from
expectation. There are, Walsh argues, three equally legitimate ways to
describe this simulation and no way to prioritize any of the descriptions
over any of the others. What is most interesting about this scenario is
that under each of the distinct descriptions, readers are led to draw dif-
ferent (and incompatible) conclusions about the role of drift in the out-
come of the simulation. The first alternative is nothing more than a de-
scription of the simulation as a single series of 100 tosses of a fair coin,
with an outcome of 49 heads and 51 tails. The second alternative is one
in which the simulation is described as two (independent) series of a
(different) fair coin being tossed 50 times, where the results are 20 heads
and 30 tails and 29 heads and 21 tails, respectively. The final alternative
is one in which the simulation is described in terms of the experimenters’
tossing of the coins, namely, as a collection of 10 series of 10 coin tosses.
It is easiest to describe the results of this last outcome graphically (fig.
1).

Looking back at the three descriptions, recall that Walsh stresses that
error, the analogue of drift, varies according to the description of the
simulation. With regard to the first alternative, there does not seem to be
much deviation from our expectations of the outcome, given that the
coins are fair (49 heads and 51 tails vs. the expected 50/50 distribution).
Yet, in looking at the second and third alternative descriptions of the
simulations, we get quite different stories insofar as we see an increasing
trend away from our expectations, with the second alternative of 20 heads
and 30 tails and 31 heads and 19 tails versus the expected 25/25 split and
with the third alternative deviating from our expectations in 60% of the
trials.

At this point, Walsh attempts to drive his point home by drawing
attention to the fact that if drift is interpreted causally (e.g., as a means
of explaining the deviation from expectation), then it seems that the causal
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power of drift varies drastically in each of the three cases; in the first
instance, there is only a small deviation from expectation, and hence drift
is only interacting weakly to produce the outcome, yet, in the third in-
stance, where 60% of the trials deviate from expectation, drift seems to
be causally interacting very strongly to produce the outcome. The problem
is, of course, that these are not distinct populations being compared but
alternative descriptions of the same population. So Walsh seems to present
the causal interpretation with a dilemma: either accept the contradiction
that drift-the-cause is both strong and weak in the same population or
abandon the causal interpretation of drift.

The simulation of selection runs along very similar lines with only a
few alterations to the basic setup described above. Here, the probability
of a coin landing either heads or tails is the analogue of selection, only
this time these probabilities are not equal (the coins are therefore biased,
with, e.g., coin 1 having a .6 probability of landing heads and coin 2
having a probability of .4), and, further, the coins to be tossed 10 times
by the 10 experimenters are chosen at random. Now, by using the third
of the three alternative descriptions discussed above, Walsh is able to
produce an outcome identical to the one for drift; namely, that under one
such description, the causal power of selection seems to be very strong,
and yet, under another, selection does not seem to be playing any role
whatsoever in the outcome. Hence, as before, the reader is presented with
a dilemma: either embrace a contradiction or abandon the causal inter-
pretation of selection.

The simulations are meant to show that neither drift nor selection are
causal on grounds that an alternative description of the situation produces
a rank-order reversal in both cases. Walsh’s point is a simple one: de-
pending on the particular way that a population is described, it will some-
times appear as if drift has played a significant causal role in the deviation
from expectation and, paradoxically, that drift has played little if any role
in the same experiment given a different and equally legitimate description
of the population. Therefore, the role and strength of drift (and selection)
varies in each description, a problematic outcome given that the alter-
native descriptions are all descriptions of the same population.4

Looking at the progression of Walsh’s work, we see an interesting ar-
gument emerging, wherein the proponents of the causal interpretation of
fitness are described as being committed to a particular conception of
causation, one that entails that causal processes are necessarily description
independent. At that point, Walsh produces a series of examples that
produce these seemingly counterintuitive and interesting reversals between

4. The statisticalists, however, need not accept this paradoxical conclusion since they
deny the causal elements involved in describing selection and drift.
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variables, rank-order reversals in Walsh (2007) and Simpson’s reversals
in Walsh (2010), that makes explicit an apparent tension in the causal
interpretation of fitness. The conclusion, then, is that given the apparent
correctness of the mathematical operations that produce such a reversal,
the only rational thing to do is to abandon the causal interpretation of
fitness since the reversals are only paradoxical insofar as we assume that
the processes responsible for producing them are causal processes. How-
ever, the purpose of this first section was to show that, in fact, there is
something wrong with Walsh’s interpretation of the mathematical oper-
ations involved in producing these reversals, namely, his faulty interpre-
tation of the population-size parameter, n, and his failure to take account
of the fact that n is intended to describe the real population in a fixed
environment and not any arbitrarily designated population of individuals.
With respect to Gillespie’s equation, the population of individuals de-
scribed by n is not, in an important respect, anything at all like the
populations of coins Walsh (2007) describes.5 Therefore, whereas it is
perfectly legitimate to arbitrarily subdivide a population of independent
coin tosses, the same cannot be said of a group of individual organisms
that make up one biological population in a given environment, precisely
because it is that situation and no other which determines the fitness
measures for those individuals. In short, one cannot slice up and redescribe
a biological population willy-nilly the way one can when describing a
coin-tossing experiment since doing so potentially removes a portion of
that subpopulation from its all-important ecological context.

However, for the sake of argument, let’s grant the possibility of fitness
reversals in evolutionary biology and see what, if any, consequences follow
for the causal interpretation of fitness. In fact, there are significant in-
stances of fitness reversal occurring within evolutionary biology, a phe-
nomenon that is neither mysterious nor reason enough to reject a causal
interpretation of fitness. It is to this topic that we now turn.

3. Simpson Docks with Price (and, by Proxy, Group Selection). As we
have just shown, Gillespie’s model does not really produce a case of
Simpson’s paradox. But there are plenty of cases in evolutionary biology
that do seem to produce a fitness reversal; whenever there are multiple
levels of selection in operation, there is always a possibility to observe an
instance of fitness reversal (Sober 1993, 98–102; see also Northcott 2010).
As Price (1972) showed, in a subdivided population the overall change
in a mean trait value, Dz, can be decomposed into (1) the (weighted)

5. The same applies to the apple-sampling examples in his paper, although we do not
discuss those cases here.
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average fitness within each subpopulation and (2) the among-populations
fitness, as follows:6

wij
Dz p Cov , z( )ij ijw••

w w wi• i• ijp Cov , z � E Cov , z ,( ) [( ) ( )]i i• i j ijw w w•• •• i•

where z is a trait value, w is a reproductive value (e.g., the number of
offspring), subscript ij signifies the jth individual in the ith subgroup, dot
subscript signifies average, E is average, and Cov is covariance. What this
equation tells us is that a trait that has lower fitness in each group (a
negative within-group covariance: Covj(wij / wi•, zij)) may increase in the
population as a whole (i.e., Dz 1 0), due to high among-group fitness (a
positive among-group covariance: Covi(wi• / w••, zi•)). This, of course, is
the situation that obtains with an examination of altruism, which provides
an excellent example. Altruistic individuals are selected against within
each group (therefore, these individuals are less fit than selfish individuals)
but are favored by group selection, as groups with more altruistic indi-
viduals grow faster than those composed of selfish ones. If we denote by
wi,alt, wi,self the fitness of altruistic and selfish individuals in the ith sub-
population, respectively, and by w•,alt, w•,self their overall fitnesses, in the
above case we expect

w 1 wi,self i,alt

for all subpopulations i, and

w ! w•,self •,alt

for the overall metapopulation, which yields a Simpson’s paradox.
So does this conclusion spell disaster for the causal interpretation of

fitness? We think not. In fact, on the face of it, what a Simpson’s paradox
suggests is not that we should deny the causal processes driving selection
but rather that there are multiple levels of selection at work. The fitness
reversal in group selection is a mathematical fact and is itself neutral to
either the causal or the noncausal interpretations of fitness. As we have
indicated above, to achieve a reductio of the causal interpretation of fitness
from Simpson’s paradox, Walsh had to resort to the second step of his
argument, the one using Pearl’s STP. In what follows, we will examine
his argument and explain why, contrary to Walsh’s claim, fitness reversals
present no threat to the causal interpretation of fitness.

6. For the sake of simplicity, we here assume asexual reproduction with complete
inheritance of the trait: that is, an offspring has exactly the same trait value as its
parent.
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TABLE 1. THE PERPLEXING PAINKILLER.

E ∼E N Recovery Rate (%)

F:
C 24 16 40 62
∼C 8 2 10 80

∼F:
C 1 9 10 10
∼C 10 30 40 25

Overall:
C 25 25 50 50
∼C 18 32 50 36

Source.—Walsh (2010), 159.
Note.—Numerical typos in the original table were corrected.

4. Walsh Flirts with Pearl. Walsh’s concern for the Simpson’s paradox
is rooted in his belief that the Simpson’s reversal of fitness between two
different levels of description (e.g., between a subpopulation and the whole
population) entails a violation of Pearl’s STP (Pearl 2000, 181), which
states:

Sure-Thing Principle (STP). An action C that increases the proba-
bility of an event E in each subpopulation must also increase the
probability of E in the population as a whole, provided that the action
does not change the distribution of the subpopulation.

Walsh construes this principle as a fundamental condition to be satisfied
by any causal relationship. According to Walsh, there are some instances
of Simpson’s paradox that violate this principle, which indicates that the
probabilities involved cannot be interpreted causally. A Simpson’s reversal
of fitness between two different levels of description, in his eyes, falls into
the malignant category, and thus he concludes that fitness is indeed not
causal at all. As we demonstrated in the first section, Walsh’s example
fails to produce a Simpson’s paradox, yet, as we also showed in the
previous section, this kind of reversal does in fact arise in evolutionary
biology. Does this mean that fitness is noncausal after all, as Walsh sug-
gests?

The answer is no. But before jumping to the conclusion, let us reca-
pitulate Walsh’s argument. To explain what he means by a violation of
the STP, he introduces the example of the Perplexing Painkiller, where
administration of a new painkiller drug (C) increases the rate of recovery
(E) in both female (F ) and male (∼F ) subgroups, but the overall data
marginalized by gender show that the drug in fact decreases the recovery
rate (table 1 of Walsh [2010], reproduced here as table 1). This is clearly
a case of Simpson’s paradox since C and E are positively correlated in
every subgroup (F and ∼F ) while they show negative correlation in the
population as a whole. Now, in this case, suppose that the paradox was
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Figure 2. Causal relations of the Perplexing Painkiller example before (a) and
after (b) intervention on treatment, C.

caused due to F being a confounding factor; that is, males were more
prone to take a drug (which indeed is harmful) but were by nature more
likely to recover than females. Thus, the gender (F ) was indeed the cause
of both the drug administration (C) and the recovery (E), and this double-
edged effect was the source of the apparent paradox (fig. 2 of Walsh
[2010], reproduced here as fig. 2a). Walsh argues that the Perplexing Pain-
killer example violates STP, given that “an action, C (administering the
drug), that increases the probability of nonrecovery, ∼E, in each subpop-
ulation decreases it overall,” while the same action does not change the
distribution of the subpopulation—that is, taking a drug does not affect
the gender (F ). From this “violation,” he concludes that this example
presents “an incoherent set of causal beliefs” (2010, 162).

But is there really a violation? What is crucial in Pearl’s STP, but
completely ignored in Walsh’s discussion, is that Pearl’s motivation and
use of this theorem is concerned with causal calculation (his do calculus)
and not with ordinary probabilistic calculation. For example, “An action
C increases the probability of an event E” translates to P(EFdo(C)) in
Pearl’s notation, which is different from the mere conditional probability
P(EFC). Pearl’s do calculus concerns the possible or counterfactual prob-
abilistic distribution induced from a particular manipulation of the causal
model, not the actual frequency observed in the data. Regarding our
example, what is at issue is not the conditional probability that a person
recovers given that we observe she or he took a drug but the probability
of her or his recovery that would be obtained if we intervene and make
the person take the drug. With this distinction in mind, Pearl’s STP reads
as follows:

Sure-Thing Principle (STP).

If P(FFdo(C )) p P(FFdo(∼C )) p P(F ),

then P(EFdo(C ), F ) 1 P(EFdo(∼C ), F )
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and P(EFdo(C ), ∼F ) 1 P(EFdo(∼C ), ∼F )

entail P(EFdo(C )) 1 P(EFdo(∼C )).

To examine whether the Perplexing Painkiller example really violates this
principle, we need to specify the value for each term in the above formula.
The probability distribution induced by an intervention is obtained with
the aid of a directed acyclic graph (DAG) that represents the causal
relationship after the intervention. The DAG resulting from the inter-
vention on drug administration (C) is shown in our figure 2b. The new
probability distribution is obtained by multiplying the observed condi-
tional probabilities of each node given its parents in the new DAG (Pearl
2000, 72). Applying Pearl’s do calculus to Walsh’s probability distribution
in table 1 and causal structure in figure 2b yields in each gender

P(EFdo(C ), F ) p P(EFC, F ) ! P(EFdo(∼C ), F ) p P(EF∼C, F ),

P(EFdo(C ), ∼F ) p P(EFC, ∼F ) ! P(EFdo(∼C ), ∼F ) p P(EF∼C, ∼F ),

and the overall distribution (marginalized by gender)

P(EFdo(C )) p P(EFC, F )P(F ) � P(EFC, ∼F )P(∼F ) p .35

! P(EFdo(∼C )) p P(EF∼C, F )P(F ) � P(EF∼C, ∼F )P(∼F ) p .525.

Therefore, the example shows no violation of STP; that is, the adminis-
tration of the drug (C) decreases the probability of recovery (F ) both in
each subpopulation and in the population as a whole.

We have just shown that there is no violation in the Perplexing Painkiller
example. But this result can be generalized: there is no such thing as
“violation” of the STP. After a little thought, this is obvious. Pearl’s do
calculation works only when a definite causal model is given as one of
its inputs; as such, the result of the calculation cannot be inconsistent
with its premises (unless, of course, the calculation itself is defective). This
means that from the STP alone we cannot judge whether our causal beliefs
are true, let alone whether they are causal or noncausal.7 The alleged
violation of the STP results only from the equivocal interpretation of the
probability term appearing in the principle, taking the proviso as a state-
ment about do calculus and interpreting the inner conditional as being
about ordinary probability. Once the STP is interpreted correctly and
coherently in terms of causality (i.e., Pearl’s do calculus), there will be no
violation whatsoever, and, as a consequence, Walsh’s attempt to construct
a reductio of any sort—either with his Perplexing Painkiller example or
with the causal interpretation of fitness—is doomed to fail.

7. Such a judgment might be possible, only if we compare the result of do calculation
and the empirical data obtained from the real experiment (which is not to be confused
with the mere observation).
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As we have seen above, Pearl’s STP is to be read entirely in terms of
his do calculus, that is, causal probability. Meanwhile, we can also read
the STP in an entirely probabilistic way, yielding the following “ordinary”
probability version:

Probabilistic Sure-Thing Principle (PSTP). Positive (negative) cor-
relation of an event C with an event E in each subpopulation Fi

entails positive (negative) correlation of C with E in the population
as a whole, provided that C is independent of classification Fi.

Taken as such, this proposition simply reveals a necessary condition for
the Simpson’s paradox, namely, that it arises only if C and Fi’s are de-
pendent. Again, this brings no incoherence to our example above, as
clearly the proviso (independence of drug administration, C, and gender,
F ) is not met. Both of Walsh’s examples show biased sampling and thus
correlation between C and F.

It is also interesting to note that PSTP is consistent with our case of
group selection, wherein the proviso is tantamount to saying that the
distribution of the trait in question is independent of its grouping. This
will make the among-group variance and hence among-group covariance
(Covi(wi• / w••, zi•)) zero. Then from the rest of the equation, we clearly
see that at least one of the within-group covariance values must have the
same sign as the total covariance. In the case of altruism, if every sub-
population contains the same proportion of altruists and individualists,
the subpopulations do not differ in their “group trait,” and thus no group
selection occurs. The total change in frequency in this case should reflect
only within-group fitness; that is, altruists should decrease both in the
subpopulations and the whole population—this would produce no Simp-
son’s paradox and thus no violation of PSTP.

5. Conclusion. Walsh argues that causation conforms to the STP and that
fitness distributions do not; therefore, fitness distributions are not causal.
If there were causal processes occurring within natural selection, then
those processes ought to be description independent; that is, the outcome
of any description of an evolutionary process ought to remain the same,
irrespective of how we describe that process, according to Walsh. For
instance, in Walsh’s coin example, we would infer that, given the three
alternative descriptions of the population described above, selection (or
drift) either did or did not play a substantive role in the production of
the (simulated) outcome since, under one description, it seems as if se-
lection (or drift) played a predominant role in the outcome, while, given
another (equally legitimate) description, it seems as if selection (or drift)
played almost no causal role in the outcome described. Walsh’s point is
that in the event that alternative descriptions alter either the presence or
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the strength of the alleged causal properties/processes, then there are no
actual causal properties/processes doing any real work within that system.

However, regardless of the occurrence of reversals in (re)descriptions
of coin-sampling experiments, we showed that Gillespie’s model of selec-
tion does not generate a Simpson’s reversal, much less a paradox of any
kind. This is because Gillespie’s population size, n, is not a mere statistical/
descriptive summary that is dependent on our interests at the time but
has a real biological meaning and significance, one that cannot be divorced
from the notion without serious harm being done to the interpretation
of the model.

Further, we showed that the Price equation is capable of describing the
conditions under which a Simpson’s paradox really does seem to arise in
the context of evolutionary biology. Nevertheless, even this occurrence
fails to produce the result that Walsh intended, namely, a violation of
Pearl’s STP. In fact, such a violation is an illusory result due to the
misapplication and misinterpretation of the principle. If Pearl’s principle
is understood consistently, as we have outlined above, then no such vi-
olation arises, regardless of whether STP is interpreted causally or purely
probabilistically.

In closing, then, while it is left an open question as to whether fitness
ought to be interpreted in a causal manner, Walsh’s arguments for rejecting
the causal interpretation of fitness founder on the shoals. As we have
shown, his arguments against the causal interpretation depend too heavily
on a defective interpretation of biological population, one that misinforms
his reading of Gillespie’s model of selection. Furthermore, Walsh has
failed to produce the claimed Simpson’s paradox and violation of the
STP, which constitute the core of his criticism of the causalists’ position.

Appendix: Proof of Probabilistic Sure-Thing Principle

The proof basically recapitulates that of Pearl (2000, 181), with the re-
placement of do calculus by ordinary probabilistic statements.

PSTP. Positive (negative) correlation of an event C with an event E
in each subpopulation Fi entails positive (negative) correlation of C
with E in the population as a whole, provided that C is independent
of classification Fi.

Proof. Let C be pairwise independent of each class F1, F2, . . . , Fn;
that is,

P(FFC ) p P(FF∼C ) p P(F) for 1 ≤ i ≤ n. (A1)i i i

From the law of total probability and (A1), we obtain
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n

P(EFC ) p P(EFC, F)P(FFC )� i i
ip1

n

p P(EFC, F)P(F). (A2)� i i
ip1

Likewise, for ∼C,
n

P(EF∼C ) p P(EF∼C, F)P(F). (A3)� i i
ip1

Hence, from (A2) and (A3), if

P(EFC, F) 1 P(EF∼C, F) for 1 ≤ i ≤ n,i i

then

P(EFC ) 1 P(EF∼C ).

QED
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